Patel Rutika, Loverde Sharon M
Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY, 10016.
Department of Chemistry, College of Staten Island, The City University of New York, 2800 Victory Boulevard, Staten Island, New York, 10314, United States.
bioRxiv. 2025 Jan 21:2025.01.16.633411. doi: 10.1101/2025.01.16.633411.
Biomolecules predominantly exert their function through altering conformational dynamics. The nucleosome core particle (NCP) is the fundamental unit of chromatin. DNA with ~146 base pairs wrap around the histone octamer to form a nucleosome. The histone octamer is comprised of two copies of each histone protein (H3, H4, H2A, and H2B) with a globular core and disordered N-terminal tails. Epigenetic modifications of the histone N-terminal tails play a critical role in the regulation of chromatin structure and biological processes such as transcription and DNA repair. Here, we report all-atomistic molecular dynamics (MD) simulations of the nucleosome at microsecond timescales to construct Markov state models (MSMs) to elucidate distinct conformations of the histone tails. We employ the time-lagged independent component analysis (tICA) to capture their essential slow dynamics, with k-means clustering used to discretize the conformational space. MSMs unveil distinct states and transition probabilities to characterize the dynamics and kinetics of the tails. Next, we focus on the H2B tail, one of the least studied tails. We show that acetylation increases secondary structure formation, with an increase in transition rates. These findings will aid in understanding the functional implications of tail conformations in nucleosome stability and gene regulation.
生物分子主要通过改变构象动力学来发挥其功能。核小体核心颗粒(NCP)是染色质的基本单位。约146个碱基对的DNA缠绕在组蛋白八聚体周围形成核小体。组蛋白八聚体由每种组蛋白(H3、H4、H2A和H2B)的两个拷贝组成,具有球状核心和无序的N端尾巴。组蛋白N端尾巴的表观遗传修饰在染色质结构调控以及转录和DNA修复等生物过程中起着关键作用。在此,我们报告了在微秒时间尺度上对核小体进行的全原子分子动力学(MD)模拟,以构建马尔可夫状态模型(MSM)来阐明组蛋白尾巴的不同构象。我们采用时间滞后独立成分分析(tICA)来捕捉其基本的慢动力学,并用k均值聚类来离散构象空间。MSM揭示了不同的状态和转移概率,以表征尾巴的动力学和动力学过程。接下来,我们聚焦于研究最少的尾巴之一H2B尾巴。我们表明,乙酰化增加了二级结构的形成,并提高了转移速率。这些发现将有助于理解尾巴构象对核小体稳定性和基因调控的功能影响。