Yang Marty G, Richter Hannah J, Wang Simai, McNally Colin P, Harris Nicole, Dhillon Simaron, Maresca Michela, de Wit Elzo, Willenbring Holger, Maher Jacquelyn, Goodarzi Hani, Ramani Vijay
Gladstone Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA 94158.
these authors contributed equally.
bioRxiv. 2025 Jan 22:2025.01.17.633622. doi: 10.1101/2025.01.17.633622.
We present a genome-scale method to map the single-molecule co-occupancy of structurally distinct nucleosomes, subnucleosomes, and other protein-DNA interactions via long-read high-resolution adenine methyltransferase footprinting. Iteratively Defined Lengths of Inaccessibility (IDLI) classifies nucleosomes on the basis of shared patterns of intranucleosomal accessibility, into: i.) minimally-accessible chromatosomes; ii.) octasomes with stereotyped DNA accessibility from superhelical locations (SHLs) ±1 through ±7; iii.) highly-accessible unwrapped nucleosomes; and iv.) subnucleosomal species, such as hexasomes, tetrasomes, and other short DNA protections. Applying IDLI to mouse embryonic stem cell (mESC) chromatin, we discover widespread nucleosomal distortion on individual mammalian chromatin fibers, with >85% of nucleosomes surveyed displaying degrees of intranucleosomally accessible DNA. We observe epigenomic-domain-specific patterns of distorted nucleosome co-occupancy and positioning, including at enhancers, promoters, and mouse satellite repeat sequences. Nucleosome distortion is programmed by the presence of bound transcription factors (TFs) at cognate motifs; occupied TF binding sites are differentially decorated by distorted nucleosomes compared to unbound sites, and degradation experiments establish direct roles for TFs in structuring binding-site proximal nucleosomes. Finally, we apply IDLI in the context of primary mouse hepatocytes, observing evidence for pervasive nucleosomal distortion . Further genetic experiments reveal a role for the hepatocyte master regulator FOXA2 in directly impacting nucleosome distortion at hepatocyte-specific regulatory elements . Our work suggests extreme-but regulated-plasticity in nucleosomal DNA accessibility at the single-molecule level. Further, our study offers an essential new framework to model transcription factor binding, nucleosome remodeling, and cell-type specific gene regulation across biological contexts.
我们提出了一种基因组规模的方法,通过长读长高分辨率腺嘌呤甲基转移酶足迹法来绘制结构不同的核小体、亚核小体和其他蛋白质-DNA相互作用的单分子共占据图谱。迭代定义的不可及长度(IDLI)根据核小体内可及性的共享模式对核小体进行分类,分为:i)可及性最低的染色质小体;ii)从超螺旋位置(SHL)±1至±7具有定型DNA可及性的八聚体;iii)可及性高的解旋核小体;iv)亚核小体种类,如六聚体、四聚体和其他短DNA保护片段。将IDLI应用于小鼠胚胎干细胞(mESC)染色质,我们发现在单个哺乳动物染色质纤维上存在广泛的核小体畸变,超过85%的被检测核小体显示出核小体内可及DNA的程度。我们观察到核小体共占据和定位的表观基因组域特异性模式,包括在增强子、启动子和小鼠卫星重复序列处。核小体畸变由同源基序处结合的转录因子(TFs)的存在所编程;与未结合位点相比,被占据的TF结合位点被畸变的核小体以不同方式修饰,降解实验确定了TFs在构建结合位点近端核小体中的直接作用。最后,我们在原代小鼠肝细胞的背景下应用IDLI,观察到普遍存在核小体畸变的证据。进一步的遗传实验揭示了肝细胞主调节因子FOXA2在直接影响肝细胞特异性调节元件处的核小体畸变中的作用。我们的工作表明在单分子水平上核小体DNA可及性具有极端但受调控的可塑性。此外,我们的研究提供了一个重要的新框架,用于模拟跨生物背景的转录因子结合、核小体重塑和细胞类型特异性基因调控。