Gladstone Institute for Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA.
Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA.
Nat Struct Mol Biol. 2023 Oct;30(10):1571-1581. doi: 10.1038/s41594-023-01093-6. Epub 2023 Sep 11.
Nearly all essential nuclear processes act on DNA packaged into arrays of nucleosomes. However, our understanding of how these processes (for example, DNA replication, RNA transcription, chromatin extrusion and nucleosome remodeling) occur on individual chromatin arrays remains unresolved. Here, to address this deficit, we present SAMOSA-ChAAT: a massively multiplex single-molecule footprinting approach to map the primary structure of individual, reconstituted chromatin templates subject to virtually any chromatin-associated reaction. We apply this method to distinguish between competing models for chromatin remodeling by the essential imitation switch (ISWI) ATPase SNF2h: nucleosome-density-dependent spacing versus fixed-linker-length nucleosome clamping. First, we perform in vivo single-molecule nucleosome footprinting in murine embryonic stem cells, to discover that ISWI-catalyzed nucleosome spacing correlates with the underlying nucleosome density of specific epigenomic domains. To establish causality, we apply SAMOSA-ChAAT to quantify the activities of ISWI ATPase SNF2h and its parent complex ACF on reconstituted nucleosomal arrays of varying nucleosome density, at single-molecule resolution. We demonstrate that ISWI remodelers operate as density-dependent, length-sensing nucleosome sliders, whose ability to program DNA accessibility is dictated by single-molecule nucleosome density. We propose that the long-observed, context-specific regulatory effects of ISWI complexes can be explained in part by the sensing of nucleosome density within epigenomic domains. More generally, our approach promises molecule-precise views of the essential processes that shape nuclear physiology.
几乎所有的核基本过程都作用于包装成核小体阵列的 DNA 上。然而,我们对于这些过程(例如 DNA 复制、RNA 转录、染色质外排和核小体重塑)如何在单个染色质阵列上发生的理解仍未解决。在这里,为了解决这一不足,我们提出了 SAMOSA-ChAAT:一种大规模多重单分子足迹法,用于绘制受几乎任何染色质相关反应影响的单个重组染色质模板的初级结构。我们应用这种方法来区分染色质重塑的基本模仿开关(ISWI)ATP 酶 SNF2h 的竞争模型:核小体密度依赖性间隔与固定连接长度核小体夹。首先,我们在小鼠胚胎干细胞中进行体内单分子核小体足迹实验,发现 ISWI 催化的核小体间隔与特定表观基因组域的基础核小体密度相关。为了建立因果关系,我们应用 SAMOSA-ChAAT 在单分子分辨率下,对重组核小体阵列中不同核小体密度的 ISWI ATP 酶 SNF2h 及其亲本复合物 ACF 的活性进行定量。我们证明 ISWI 重塑酶作为密度依赖性、长度感应核小体滑尺起作用,其编程 DNA 可及性的能力由单分子核小体密度决定。我们提出,ISWI 复合物长期观察到的、特定于上下文的调节效应部分可以通过在表观基因组域内检测核小体密度来解释。更一般地说,我们的方法有望为塑造核生理学的基本过程提供分子精确的视图。