Bafaloukou Marirena, Schalkamp Ann-Kathrin, Fletcher-Lloyd Nan, Capstick Alex, Walsh Chloe, Sandor Cynthia, Kouchaki Samaneh, Nilforooshan Ramin, Barnaghi Payam
Department of Brain Sciences, Imperial College London, UK.
UK Dementia Research Institute at Care Research and Technology Centre, UK.
EClinicalMedicine. 2025 Jan 20;80:103032. doi: 10.1016/j.eclinm.2024.103032. eCollection 2025 Feb.
Agitation affects around 30% of people living with dementia (PLwD), increasing carer burden and straining care services. Agitation identification typically relies on subjective clinical scales and direct patient observation, which are resource-intensive and challenging to incorporate into routine care. Clinical applicability of data-driven methods for agitation monitoring is limited by constraints such as short observational periods, data granularity, and lack of interpretability and generalisation. Current interventions for agitation are primarily medication-based, which may lead to severe side effects and lack personalisation. Understanding how real-world factors interact with agitation within home settings offers a promising avenue towards identifying potential personalised non-pharmacological interventions.
We used longitudinal data (32,896 person-days from n = 63 PLwD) collected using in-home monitoring devices between December 2020 and March 2023. Employing machine learning techniques, we developed a monitoring tool to identify the presence of agitation during the week. We incorporated a traffic-light system to stratify agitation probability estimates supporting clinical decision-making, and employed the SHapley Additive exPlanations (SHAP) framework to enhance interpretability. We designed an interactive tool that enables the exploration of personalised non-pharmacological interventions, such as modifying ambient light and temperature.
Light Gradient-boosting Machine (LightGBM) achieved the highest performance in identifying agitation over an 8-day period with a sensitivity of 71.32% ± 7.38 and specificity of 75.28% ± 7.38. Implementing the traffic-light system for stratification increased specificity to 90.3% ± 7.55 and improved all metrics. Key features for identifying agitation included low nocturnal respiratory rate, heightened alertness during sleep, and increased indoor illuminance, as revealed by statistical and feature importance analysis. Using our interactive tool, we identified indoor lighting and temperature adjustments as the most promising and feasible intervention options within our cohort.
Our interpretable framework for agitation monitoring, developed using data from a dementia care study, showcases significant clinical value. The accompanying interactive interface allows for the simulation of non-pharmacological interventions, facilitating the design of personalised interventions that can improve in-home dementia care.
This study is funded by the UK Dementia Research Institute [award number UK DRI-7002] through UK DRI Ltd, principally funded by the Medical Research Council (MRC), and the UKRI Engineering and Physical Sciences Research Council (EPSRC) PROTECT Project (grant number: EP/W031892/1). Infrastructure support for this research was provided by the NIHR Imperial Biomedical Research Centre (BRC) and the UKRI Medical Research Council (MRC). P.B. is also funded by the Great Ormond Street Hospital and the Royal Academy of Engineering. C.S. is supported by the UK Dementia Research Institute [award number UK DRI-5209], a UKRI Future Leaders Fellowship [MR/MR/X032892/1] and the Edmond J. Safra Foundation. R.N. is funded by UK Dementia Research Institute [award number UK DRI-7002] and the UKRI Engineering and Physical Sciences Research Council (EPSRC) PROTECT Project (grant number: EP/W031892/1). M.B. and A.K.S. are funded by the UK Dementia Research Institute [award number UKDRI-7002 and UKDRI-5209]. N.F.L., A.C., C.W. and S.K. are funded by the UK Dementia Research Institute [award number UK DRI-7002].
激越影响约30%的痴呆症患者(PLwD),增加了护理负担并使护理服务不堪重负。激越的识别通常依赖主观临床量表和对患者的直接观察,这需要大量资源,并且难以纳入常规护理。用于激越监测的数据驱动方法的临床适用性受到诸如观察期短、数据粒度以及缺乏可解释性和普遍性等限制。目前针对激越的干预主要基于药物,这可能会导致严重的副作用且缺乏个性化。了解现实世界中的因素如何在家庭环境中与激越相互作用,为识别潜在的个性化非药物干预提供了一条有前景的途径。
我们使用了2020年12月至2023年3月期间通过家庭监测设备收集的纵向数据(来自63名PLwD的32,896人日)。利用机器学习技术,我们开发了一种监测工具来识别一周内激越的存在。我们纳入了一个交通信号灯系统,对激越概率估计进行分层,以支持临床决策,并采用SHapley加性解释(SHAP)框架来增强可解释性。我们设计了一个交互式工具,能够探索个性化的非药物干预措施,如调节环境光和温度。
轻梯度提升机(LightGBM)在识别8天内激越方面表现最佳,灵敏度为71.32%±7.38,特异性为75.28%±7.38。实施用于分层的交通信号灯系统将特异性提高到90.3%±7.55,并改善了所有指标。统计和特征重要性分析表明,识别激越的关键特征包括夜间呼吸频率低、睡眠期间警觉性提高以及室内照度增加。使用我们的交互式工具,我们确定室内照明和温度调节是我们队列中最有前景且可行的干预选项。
我们使用痴呆症护理研究数据开发的可解释激越监测框架具有显著的临床价值。随附的交互式界面允许模拟非药物干预,有助于设计可改善家庭痴呆症护理的个性化干预措施。
本研究由英国痴呆症研究所[资助编号UK DRI - 7002]通过UK DRI有限公司资助,主要由医学研究理事会(MRC)资助,以及英国研究与创新署工程和物理科学研究理事会(EPSRC)的PROTECT项目(资助编号:EP/W031892/1)。本研究的基础设施支持由国家卫生研究院帝国生物医学研究中心(BRC)和英国研究与创新署医学研究理事会(MRC)提供。P.B.还由大奥蒙德街医院和皇家工程院资助。C.S.得到英国痴呆症研究所[资助编号UK DRI - 5209]、英国研究与创新署未来领袖奖学金[MR/MR/X032892/1]以及爱德蒙·J·萨夫拉基金会的支持。R.N.由英国痴呆症研究所[资助编号UK DRI - 7002]和英国研究与创新署工程和物理科学研究理事会(EPSRC)的PROTECT项目(资助编号:EP/W0