Suppr超能文献

基于深度学习的一维卷积神经网络模型的开发,用于使用外周血单核细胞单细胞RNA测序数据进行跨物种自然杀伤T细胞识别。

Development of a deep learning-based 1D convolutional neural network model for cross-species natural killer T cell identification using peripheral blood mononuclear cell single-cell RNA sequencing data.

作者信息

Chokeshaiusaha Kaj, Sananmuang Thanida, Puthier Denis, Kedkovid Roongtham

机构信息

Department of Veterinary Science, Faculty of Veterinary Medicine, Rajamangala University of Technology, Tawan-OK, Chon Buri, Thailand.

Aix-Marseille Université, INSERM UMR 1090, TAGC, Marseille, France.

出版信息

Vet World. 2024 Dec;17(12):2846-2857. doi: 10.14202/vetworld.2024.2846-2857. Epub 2024 Dec 18.

Abstract

BACKGROUND AND AIM

Natural killer T (NKT) cells exhibit the traits of both T and NK cells. Although their roles have been well studied in humans and mice, limited knowledge is available regarding their roles in dogs and pigs, which serve as models for human immunology. Single-cell RNA sequencing (scRNA-Seq) can elucidate NKT cell functions. However, identifying cells in mixed populations, like peripheral blood mononuclear cells (PBMCs) is challenging using this technique. This study presented the application of one-dimensional convolutional neural network (1DCNN) for the identification of NKT cells within scRNA-seq data derived from PBMCs.

MATERIALS AND METHODS

We used human scRNA-Seq data to train a 1DCNN model for cross-species identification of NKT cells in canine and porcine PBMC datasets. K-means clustering was used to isolate human NKT cells for training the 1DCNN model. The trained model predicted NKT cell subpopulations in PBMCs from all species. We performed Differential gene expression and Gene Ontology (GO) enrichment analyses to assess shared gene functions across species.

RESULTS

We successfully trained the 1DCNN model on human scRNA-Seq data, achieving 99.3% accuracy, and successfully identified NKT cell candidates in human, canine, and porcine PBMC datasets using the model. Across species, these NKT cells shared 344 genes with significantly elevated expression (FDR ≤ 0.001). GO term enrichment analyses confirmed the association of these genes with the immunoactivity of NKT cells.

CONCLUSION

This study developed a 1DCNN model for cross-species NKT cell identification and identified conserved immune function genes. The approach has broad implications for identifying other cell types in comparative immunology, and future studies are needed to validate these findings.

摘要

背景与目的

自然杀伤T(NKT)细胞兼具T细胞和NK细胞的特性。尽管它们在人类和小鼠中的作用已得到充分研究,但在作为人类免疫学模型的犬类和猪类中,关于其作用的了解有限。单细胞RNA测序(scRNA-Seq)能够阐明NKT细胞的功能。然而,使用该技术在混合细胞群体(如外周血单核细胞(PBMC))中识别细胞具有挑战性。本研究展示了一维卷积神经网络(1DCNN)在识别源自PBMC的scRNA-seq数据中的NKT细胞方面的应用。

材料与方法

我们使用人类scRNA-Seq数据训练一个1DCNN模型,用于跨物种识别犬类和猪类PBMC数据集中的NKT细胞。K均值聚类用于分离人类NKT细胞以训练1DCNN模型。训练后的模型预测了所有物种PBMC中的NKT细胞亚群。我们进行了差异基因表达和基因本体(GO)富集分析,以评估跨物种共享的基因功能。

结果

我们成功地在人类scRNA-Seq数据上训练了1DCNN模型,准确率达到99.3%,并使用该模型成功识别了人类、犬类和猪类PBMC数据集中的NKT细胞候选者。跨物种来看,这些NKT细胞共享344个表达显著上调的基因(错误发现率≤0.001)。GO术语富集分析证实了这些基因与NKT细胞免疫活性的关联。

结论

本研究开发了一种用于跨物种NKT细胞识别的1DCNN模型,并鉴定了保守的免疫功能基因。该方法对比较免疫学中其他细胞类型的识别具有广泛意义,未来需要进一步研究来验证这些发现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d907/11784060/a00791de8b64/Vetworld-17-2846-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验