Sananmuang Thanida, Puthier Denis, Chokeshaiusaha Kaj
Department of Veterinary Science, Faculty of Veterinary Medicine, Rajamangala University of Technology Tawan-OK, Chonburi, Thailand.
Aix-Marseille University, INSERM UMR 1090, TAGC, Marseille, France.
Vet World. 2025 Jul;18(7):1922-1935. doi: 10.14202/vetworld.2025.1922-1935. Epub 2025 Jul 17.
Granulosa cells (GCs) are crucial mediators of follicular development and oocyte competence in goats, with their gene expression profiles serving as potential biomarkers of fertility. However, the lack of a standardized, quantifiable method to assess GC quality using transcriptomic data has limited the translation of such findings into reproductive applications. This study aimed to develop a hybrid deep learning model integrating one-dimensional convolutional neural networks (1DCNNs) and gated recurrent units (GRUs) to classify GCs as fertility-supporting (FS) or non-fertility-supporting (NFS) using single-cell RNA sequencing (scRNA-seq) data.
We analyzed publicly available scRNA-seq datasets from monotocous and polytocous goats. A set of 44 differentially expressed genes (DEGs) (False discovery rate ≤0.01, log2 fold change ≥1.5) was identified and used to distinguish FS-GCs and NFS-GCs through Leiden clustering. The expression profiles of these DEGs served as input to train a hybrid 1DCNN-GRU classifier. Model performance was evaluated using accuracy, precision, recall, and F1 score.
The optimized hybrid model achieved high classification performance (accuracy = 98.89%, precision = 100%, recall = 97.83%, and F1 score = 98.84%). When applied to scRNA-seq datasets, it identified a significantly higher proportion of FS-GCs in the polytocous sample (87%) compared to the monotocous sample (10.17%). DEG overlap across samples further confirmed the model's biological consistency and generalizability.
This study presents the first application of deep learning-based classification of goat GCs using scRNA-seq data. The hybrid 1DCNN-GRU model offers a robust and quantifiable method for evaluating GC fertility, holding promise for improving reproductive selection in livestock breeding programs. Future validation in larger datasets and across species could establish this model as a scalable molecular tool for precision livestock management.
颗粒细胞(GCs)是山羊卵泡发育和卵母细胞能力的关键调节因子,其基因表达谱可作为潜在的生育力生物标志物。然而,缺乏一种使用转录组数据评估GC质量的标准化、可量化方法,限制了这些研究结果在生殖应用中的转化。本研究旨在开发一种整合一维卷积神经网络(1DCNNs)和门控循环单元(GRUs)的混合深度学习模型,利用单细胞RNA测序(scRNA-seq)数据将GCs分类为支持生育(FS)或不支持生育(NFS)。
我们分析了来自单胎和多胎山羊的公开可用scRNA-seq数据集。通过莱顿聚类鉴定出一组44个差异表达基因(DEGs)(错误发现率≤0.01,log2倍数变化≥1.5),并用于区分FS-GCs和NFS-GCs。这些DEGs的表达谱作为输入来训练一个混合1DCNN-GRU分类器。使用准确率、精确率、召回率和F1分数评估模型性能。
优化后的混合模型实现了高分类性能(准确率 = 98.89%,精确率 = 100%,召回率 = 97.83%,F1分数 = 98.84%)。当应用于scRNA-seq数据集时,与单胎样本(10.17%)相比,它在多胎样本中识别出的FS-GCs比例显著更高(87%)。样本间DEG重叠进一步证实了模型的生物学一致性和通用性。
本研究首次展示了使用scRNA-seq数据对山羊GCs进行基于深度学习的分类。混合1DCNN-GRU模型为评估GC生育力提供了一种强大且可量化的方法,有望改善家畜育种计划中的生殖选择。未来在更大数据集和跨物种的验证可以将该模型确立为一种用于精准家畜管理的可扩展分子工具。