Suppr超能文献

使用小波变换区分脉冲偶极子光谱中的单峰和多峰分布

Differentiating Unimodal and Multimodal Distributions in Pulsed Dipolar Spectroscopy Using Wavelet Transforms.

作者信息

Roy Aritro Sinha, Freed Jack H, Srivastava Madhur

机构信息

Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, Ithaca, 14853, NY, USA.

National Biomedical Resource for Advanced ESR Spectroscopy, Cornell University, Baker Laboratory, Ithaca, 14853, NY, USA.

出版信息

Appl Magn Reson. 2024 Mar;55(1-3):219-237. doi: 10.1007/s00723-023-01616-w. Epub 2023 Sep 22.

Abstract

Site directed spin labeling has enabled protein structure determination using electron spin resonance (ESR) pulsed dipolar spectroscopy (PDS). Small details in a distance distribution can be key to understanding important protein structure-function relationships. A major challenge has been to differentiate unimodal and overlapped multimodal distance distributions. They often yield similar distributions and dipolar signals. Current model-free distance reconstruction techniques such as Srivastava-Freed Singular Value Decomposition (SF-SVD) and Tikhonov regularization can suppress these small features in uncertainty and/or error bounds, despite being present. In this work, we demonstrate that continuous wavelet transform (CWT) can distinguish PDS signals from unimodal and multimodal distance distributions. We show that periodicity in CWT representation reflects unimodal distributions, which is masked for multimodal cases. This work is meant as a precursor to a cross-validation technique, which could indicate the modality of the distance distribution.

摘要

定点自旋标记技术已能够利用电子自旋共振(ESR)脉冲偶极光谱法(PDS)来确定蛋白质结构。距离分布中的微小细节可能是理解重要蛋白质结构-功能关系的关键。一个主要挑战是区分单峰和重叠的多峰距离分布。它们通常会产生相似的分布和偶极信号。当前的无模型距离重建技术,如Srivastava-Freed奇异值分解(SF-SVD)和Tikhonov正则化,尽管存在这些小特征,但可以在不确定性和/或误差范围内抑制它们。在这项工作中,我们证明连续小波变换(CWT)可以区分单峰和多峰距离分布的PDS信号。我们表明,CWT表示中的周期性反映了单峰分布,而在多峰情况下这种周期性会被掩盖。这项工作旨在作为一种交叉验证技术的先驱,该技术可以指示距离分布的模式。

相似文献

本文引用的文献

1
Hyperfine Decoupling of ESR Spectra Using Wavelet Transform.利用小波变换对电子自旋共振谱进行超精细解耦
Magnetochemistry. 2022 Mar;8(3). doi: 10.3390/magnetochemistry8030032. Epub 2022 Mar 8.
2
Analysis of Small-Molecule Mixtures by Super-Resolved H NMR Spectroscopy.超分辨核磁共振光谱法分析小分子混合物。
J Phys Chem A. 2022 Dec 8;126(48):9108-9113. doi: 10.1021/acs.jpca.2c06858. Epub 2022 Nov 22.
3
7
Deep neural network processing of DEER data.DEER数据的深度神经网络处理
Sci Adv. 2018 Aug 24;4(8):eaat5218. doi: 10.1126/sciadv.aat5218. eCollection 2018 Aug.
8
Optimal Tikhonov regularization for DEER spectroscopy.用于双电子-电子共振光谱学的最优蒂霍诺夫正则化
J Magn Reson. 2018 Mar;288:58-68. doi: 10.1016/j.jmr.2018.01.021. Epub 2018 Feb 1.
10
The global analysis of DEER data.全局分析 DEER 数据。
J Magn Reson. 2012 May;218:93-104. doi: 10.1016/j.jmr.2012.03.006. Epub 2012 Mar 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验