Keeley Jake, Choudhury Tajwar, Galazzo Laura, Bordignon Enrica, Feintuch Akiva, Goldfarb Daniella, Russell Hannah, Taylor Michael J, Lovett Janet E, Eggeling Andrea, Fábregas Ibáñez Luis, Keller Katharina, Yulikov Maxim, Jeschke Gunnar, Kuprov Ilya
School of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom.
Department of Physical Chemistry, University of Geneva, Quai Ernest Ansermet 30, CH-1211 Geneva, Switzerland.
J Magn Reson. 2022 May;338:107186. doi: 10.1016/j.jmr.2022.107186. Epub 2022 Mar 8.
This is a methodological guide to the use of deep neural networks in the processing of pulsed dipolar spectroscopy (PDS) data encountered in structural biology, organic photovoltaics, photosynthesis research, and other domains featuring long-lived radical pairs and paramagnetic metal ions. PDS uses distance dependence of magnetic dipolar interactions; measuring a single well-defined distance is straightforward, but extracting distance distributions is a hard and mathematically ill-posed problem requiring careful regularisation and background fitting. Neural networks do this exceptionally well, but their "robust black box" reputation hides the complexity of their design and training - particularly when the training dataset is effectively infinite. The objective of this paper is to give insight into training against simulated databases, to discuss network architecture choices, to describe options for handling DEER (double electron-electron resonance) and RIDME (relaxation-induced dipolar modulation enhancement) experiments, and to provide a practical data processing flowchart.
本文是一份方法指南,介绍了深度神经网络在处理结构生物学、有机光伏、光合作用研究以及其他涉及长寿命自由基对和顺磁性金属离子的领域中遇到的脉冲偶极光谱(PDS)数据时的应用。PDS利用磁偶极相互作用的距离依赖性;测量单个明确的距离很简单,但提取距离分布是一个困难且数学上不适定的问题,需要仔细的正则化和背景拟合。神经网络在这方面表现出色,但其“强大黑箱”的声誉掩盖了其设计和训练的复杂性——尤其是当训练数据集实际上是无限的时候。本文的目的是深入探讨针对模拟数据库的训练,讨论网络架构的选择,描述处理双电子-电子共振(DEER)和弛豫诱导偶极调制增强(RIDME)实验的选项,并提供一个实际的数据处理流程图。