深度适体:利用混合深度学习模型推进高亲和力适体发现。

DeepAptamer: Advancing high-affinity aptamer discovery with a hybrid deep learning model.

作者信息

Yang Xin, Chan Chi Ho, Yao Shanshan, Chu Hang Yin, Lyu Minchuan, Chen Ziqi, Xiao Huan, Ma Yuan, Yu Sifan, Li Fangfei, Liu Jin, Wang Luyao, Zhang Zongkang, Zhang Bao-Ting, Zhang Lu, Lu Aiping, Wang Yaofeng, Zhang Ge, Yu Yuanyuan

机构信息

Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China.

Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China.

出版信息

Mol Ther Nucleic Acids. 2024 Dec 21;36(1):102436. doi: 10.1016/j.omtn.2024.102436. eCollection 2025 Mar 11.

Abstract

Oligonucleotide aptamers are typically identified through a rigorous and time-consuming process known as systematic evolution of ligands by exponential enrichment (SELEX), which requires 20 to 30 iterative rounds to eliminate non/weak binding sequences and enrich tight binding sequences with high affinity. Moreover, inherent experimental biases and non-specific interactions within SELEX could inadvertently exclude high-affinity candidates, leading to a high failure rate. To address these challenges, we proposed DeepAptamer for identifying high-affinity sequences from unenriched early SELEX rounds. As a hybrid neural network model combining convolutional neural networks and bidirectional long short-term memory, DeepAptamer integrated sequence composition and structural features to predict aptamer binding affinities and potential binding motifs. Trained on comprehensive SELEX data, DeepAptamer outperformed existing models in accuracy as substantiated by experimental evidence. More importantly, DeepAptamer effectively identified key nucleotides for target binding. DeepAptamer can efficiently identify high-affinity aptamers against various targets, enhancing its potential to discover promising sequences in initial screening stages and obviating the 20-30 iterative selection rounds required for full enrichment of selection pools. This represented a notable leap forward in aptamer technology, with broad implications for its application across a spectrum of selection targets.

摘要

寡核苷酸适配体通常通过一种严格且耗时的过程来鉴定,即指数富集配体系统进化技术(SELEX),该过程需要20到30轮迭代以消除非特异性/弱结合序列,并富集具有高亲和力的紧密结合序列。此外,SELEX过程中固有的实验偏差和非特异性相互作用可能会无意中排除高亲和力候选序列,导致失败率较高。为应对这些挑战,我们提出了DeepAptamer,用于从未富集的早期SELEX轮次中识别高亲和力序列。作为一种结合了卷积神经网络和双向长短期记忆的混合神经网络模型,DeepAptamer整合了序列组成和结构特征,以预测适配体的结合亲和力和潜在结合基序。基于全面的SELEX数据进行训练,实验证据表明DeepAptamer在准确性方面优于现有模型。更重要的是,DeepAptamer有效地识别了与靶标结合的关键核苷酸。DeepAptamer能够高效地识别针对各种靶标的高亲和力适配体,增强了其在初始筛选阶段发现有前景序列的潜力,并且无需对筛选库进行20 - 30轮迭代选择。这代表了适配体技术的显著飞跃,对其在一系列筛选靶标中的应用具有广泛影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e947/11787022/e4a6ef71352f/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索