Tahir S Luoka Nuriddin, Khalifa Wagdi M S
University of Mediterranean Karpasia, Turkey.
Heliyon. 2025 Jan 11;11(2):e41892. doi: 10.1016/j.heliyon.2025.e41892. eCollection 2025 Jan 30.
Extreme Learning Machine (ELM) is known for its fast training speed and simplicity of implementation; however, it suffers from certain limitations, including sensitivity to random initialization and inadequate weight optimization, which can result in suboptimal accuracy and precision. This study introduces an enhanced Competitive Learning Salp Swarm Algorithm (CLSSA), which integrates the Salp Swarm Algorithm (SSA) with Competitive Swarm Optimization (CSO) to improve the exploitation capabilities of the traditional CSO. The goal is to address the limitations of traditional ELM by optimizing the weights and biases of the network more effectively, thereby improving the precision and convergence speed of ELM. The research first evaluates the efficiency of the improvement made to the CLSSA optimizer in comparison with various optimization methods, using CEC 2015 benchmark functions to demonstrate the effectiveness of the proposed improvements. The results show that CLSSA outperforms other optimizers in 86 % of the CEC 2015 functions, underscoring its superior optimization capabilities. Furthermore, the study assesses the effectiveness of the CLSSA-enhanced ELM (ELM-CLSSA) in predicting the load capacity factor. The findings reveal that the hybrid ELM-CLSSA framework significantly outperforms both alternative approaches and the traditional ELM framework in terms of training and prediction accuracy, achieving an impressive accuracy rate of 97%. The algorithm's rapid convergence, high precision, and ability to avoid local optima make it a promising solution for complex problems, such as load capacity factor prediction, which is critical for environmentally sustainable initiatives. In addition, the feature analysis conducted by ELM-CLSSA provides valuable insights into the key variables influencing load capacity factor prediction, highlighting the importance of factors such as coal energy, economic growth, technological innovation, and biomass. This study advocates for the use of the ELM-CLSSA framework to improve the precision and reliability of load capacity factor prediction, offering a valuable tool for scientists and policymakers in their efforts to promote ecological conservation and combat climate change.
极限学习机(ELM)以其快速的训练速度和实现的简单性而闻名;然而,它存在某些局限性,包括对随机初始化敏感以及权重优化不足,这可能导致次优的准确性和精度。本研究引入了一种增强的竞争学习鹈鹕群算法(CLSSA),该算法将鹈鹕群算法(SSA)与竞争群优化(CSO)相结合,以提高传统CSO的开发能力。目标是通过更有效地优化网络的权重和偏差来解决传统ELM的局限性,从而提高ELM的精度和收敛速度。该研究首先使用CEC 2015基准函数评估与各种优化方法相比,对CLSSA优化器所做改进的效率,以证明所提出改进的有效性。结果表明,CLSSA在CEC 2015函数的86%中优于其他优化器,突出了其卓越的优化能力。此外,该研究评估了CLSSA增强的ELM(ELM-CLSSA)在预测负载容量因子方面的有效性。研究结果表明,混合ELM-CLSSA框架在训练和预测准确性方面明显优于替代方法和传统ELM框架,实现了令人印象深刻的97%的准确率。该算法的快速收敛、高精度以及避免局部最优的能力使其成为解决复杂问题(如负载容量因子预测)的有前途的解决方案,这对于环境可持续发展举措至关重要。此外,ELM-CLSSA进行的特征分析为影响负载容量因子预测的关键变量提供了有价值的见解,突出了煤炭能源、经济增长、技术创新和生物质等因素的重要性。本研究主张使用ELM-CLSSA框架来提高负载容量因子预测的精度和可靠性,为科学家和政策制定者促进生态保护和应对气候变化的努力提供了一个有价值的工具。