Suppr超能文献

新生儿重症监护病房医院感染列线图模型的开发与验证:一种预测早产儿的新型且由护士主导的方法

Development and Validation of a Nosocomial Infection Nomogram Model in the NICU: A Novel and Nurse-Led Way to Prediction in Preterm Infants.

作者信息

Shang Yanyan, Chen Ling, Hu Xindie, Zhang Keqian, Cheng Qian, Shui Xiaoyu, Deng Zhiyue

机构信息

Department of Neonatology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China.

出版信息

Infect Drug Resist. 2025 Jan 29;18:589-599. doi: 10.2147/IDR.S486290. eCollection 2025.

Abstract

PURPOSE

Nosocomial infections (NI) are a leading cause of mortality in preterm infants in the Neonatal Intensive Care Unit (NICU). The key to reducing the risk of NI is early detection and treatment in time. Nurses are close observers and primary caregivers for neonates at the bedside of the NICU, who are best positioned to capture the risk signals of NI. This study aims to develop a nurse-led prediction model for NI of preterm infants in the NICU.

PATIENTS AND METHODS

This study was designed as a retrospective study, preterm infants of the NICU at Renmin Hospital of Wuhan University from January 2020 to December 2023 were selected and divided into the NI group and non-NI group. Clinical data were collected and then analyzed by univariate analysis, least absolute shrinkage and selection operator (LASSO) regression analysis, and multivariate logistic regression analysis. The outcome constructed a nomogram model and its predictive efficacy was evaluated by the area under the receiver operating characteristic curve (AUC), calibration curve, and decision curve analysis (DCA). Bootstrap method was used to repeat 1,000 times for internal validation.

RESULTS

A total of 892 preterm infants were finally included and a nurse-led predictive model established, which included six variables: skin color changes, respiratory related changes, feeding deterioration, birth weight, number of arterial and venous blood draws, and days of nasogastric tube placement. The model's AUC was 0.953, indicating good discriminatory power. The calibration plot demonstrated good calibration and the Hosmer-Lemeshow test showed high consistency. DCA indicated that the nomogram had good clinical utility. Internal validation showed the AUC of 0.952.

CONCLUSION

This nomogram model, which is mainly based on nurses' observations, shows good predictive ability. It offered a more convenient option for neonatologists and nurses in the NICU.

摘要

目的

医院感染(NI)是新生儿重症监护病房(NICU)中早产儿死亡的主要原因。降低NI风险的关键在于早期及时发现和治疗。护士是NICU床边新生儿的密切观察者和主要护理人员,最有能力捕捉NI的风险信号。本研究旨在建立一种由护士主导的NICU早产儿NI预测模型。

患者与方法

本研究设计为回顾性研究,选取武汉大学人民医院NICU 2020年1月至2023年12月的早产儿,分为NI组和非NI组。收集临床资料,然后进行单因素分析、最小绝对收缩和选择算子(LASSO)回归分析以及多因素逻辑回归分析。结果构建了列线图模型,并通过受试者操作特征曲线(AUC)下面积、校准曲线和决策曲线分析(DCA)评估其预测效能。采用Bootstrap法重复1000次进行内部验证。

结果

最终纳入892例早产儿,建立了由护士主导的预测模型,该模型包括六个变量:皮肤颜色变化、呼吸相关变化、喂养恶化、出生体重、动静脉采血次数和鼻胃管放置天数。该模型的AUC为0.953,表明具有良好的区分能力。校准图显示校准良好,Hosmer-Lemeshow检验显示高度一致性。DCA表明列线图具有良好的临床实用性。内部验证显示AUC为0.952。

结论

这个主要基于护士观察的列线图模型显示出良好的预测能力。它为NICU的新生儿科医生和护士提供了更便捷的选择。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f535/11787785/64eb7bc54596/IDR-18-589-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验