Suppr超能文献

[早产儿血流动力学显著的动脉导管未闭的预测因素及列线图预测模型的构建]

[Predictive factors for hemodynamically significant patent ductus arteriosus in preterm infants and the construction of a nomogram prediction model].

作者信息

Mu Jun, Li Shu-Shu, Su Ai-Ling, Han Shu-Ping, Zhu Jin-Gai

机构信息

Department of Neonatology, Women's Hospital of Nanjing Medical University/Nanjing Women and Children's Healthcare Hospital, Nanjing 210004, China.

出版信息

Zhongguo Dang Dai Er Ke Za Zhi. 2025 Mar 15;27(3):279-285. doi: 10.7499/j.issn.1008-8830.2407143.

Abstract

OBJECTIVES

To explore the predictive factors for hemodynamically significant patent ductus arteriosus (hsPDA) in preterm infants and to construct a nomogram prediction model for hsPDA occurrence in this population.

METHODS

A retrospective analysis was conducted on the clinical data of preterm infants with gestational age <32 weeks diagnosed with patent ductus arteriosus (PDA) who were delivered at Nanjing Women and Children's Healthcare Hospital from January 2020 to December 2022. The subjects were divided into an hsPDA group (52 cases) and a non-hsPDA group (176 cases) based on the presence of hsPDA. Univariate analysis and multivariate logistic regression analysis were performed to screen predictive variables regarding the general information of the infants at birth, maternal pregnancy and delivery conditions, and relevant indicators during hospitalization. A nomogram prediction model for hsPDA occurrence was constructed using R software in preterm infants. Internal validation was performed using the Bootstrap method. Finally, the predictive model was evaluated for calibration, discrimination ability, and clinical utility.

RESULTS

Multivariate regression analysis showed that the ratio of the left atrium to aorta diameter (LA/AO), mode of delivery (vaginal), and duration of mechanical ventilation were independent predictive factors for hsPDA in preterm infants (<0.05). Based on the results of univariate analysis and multivariate logistic regression analysis, variables used to construct the nomogram prediction model for hsPDA risk included: LA/AO ratio, mode of delivery (vaginal), duration of mechanical ventilation, 5-minute Apgar score, and the presence of neonatal respiratory distress syndrome requiring surfactant therapy. The area under the receiver operating characteristic curve for this model was 0.876 (95%: 0.824-0.927), and the calibrated curve was close to the ideal reference line, indicating good calibration. The Hosmer-Lemeshow test demonstrated that the model fit well, and the clinical decision curve was above the extreme curves.

CONCLUSIONS

The nomogram prediction model, constructed using five variables (LA/AO ratio, vaginal delivery, duration of mechanical ventilation, 5-minute Apgar score, and the presence of neonatal respiratory distress syndrome requiring surfactant therapy), has reference significance for predicting the occurrence of hsPDA in preterm infants and provides valuable guidance for the early clinical identification of hsPDA.

摘要

目的

探讨早产儿血流动力学显著动脉导管未闭(hsPDA)的预测因素,并构建该人群hsPDA发生的列线图预测模型。

方法

对2020年1月至2022年12月在南京市妇幼保健院出生的孕周<32周、诊断为动脉导管未闭(PDA)的早产儿临床资料进行回顾性分析。根据是否存在hsPDA将研究对象分为hsPDA组(52例)和非hsPDA组(176例)。对婴儿出生时的一般信息、母亲妊娠和分娩情况以及住院期间的相关指标进行单因素分析和多因素logistic回归分析,以筛选预测变量。使用R软件构建早产儿hsPDA发生的列线图预测模型。采用Bootstrap法进行内部验证。最后,对预测模型的校准度、区分能力和临床实用性进行评估。

结果

多因素回归分析显示,左心房与主动脉直径比值(LA/AO)、分娩方式(阴道分娩)和机械通气时间是早产儿hsPDA的独立预测因素(<0.05)。基于单因素分析和多因素logistic回归分析结果,用于构建hsPDA风险列线图预测模型的变量包括:LA/AO比值、分娩方式(阴道分娩)、机械通气时间、5分钟阿氏评分以及是否存在需要表面活性物质治疗的新生儿呼吸窘迫综合征。该模型的受试者工作特征曲线下面积为0.876(95%:0.824 - 0.927),校准曲线接近理想参考线,表明校准良好。Hosmer-Lemeshow检验表明模型拟合良好,临床决策曲线高于极端曲线。

结论

使用五个变量(LA/AO比值、阴道分娩、机械通气时间、5分钟阿氏评分以及是否存在需要表面活性物质治疗的新生儿呼吸窘迫综合征)构建的列线图预测模型,对预测早产儿hsPDA的发生具有参考意义,为hsPDA的早期临床识别提供了有价值的指导。

相似文献

本文引用的文献

5
Patent Ductus Arteriosus of the Preterm Infant.早产儿动脉导管未闭。
Pediatrics. 2020 Nov;146(5). doi: 10.1542/peds.2020-1209.
9
What is a hemodynamically significant PDA in preterm infants?什么是早产儿血流动力学显著的动脉导管未闭?
Congenit Heart Dis. 2019 Jan;14(1):21-26. doi: 10.1111/chd.12727. Epub 2018 Dec 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验