Le Galudec Joel, Dupoy Mathieu, Duraffourg Laurent, Rebuffel Véronique, Marcoux Pierre R
ADMIR, Moirans, France.
Univ. Grenoble Alpes CEA, LETI, Grenoble, France.
Microb Biotechnol. 2025 Feb;18(2):e70093. doi: 10.1111/1751-7915.70093.
We describe a proof of concept for a new microbial identification technique using Direct Frequency Infrared (DFIR) multispectral imaging. This approach combines Quantum Cascade Laser (QCL) light sources with a microbolometer array in a lensless configuration to capture detailed multispectral images of microbial colonies. These optical fingerprints blend both morphological and spectral information, without the need for staining or colony picking. A proof-of-concept database was acquired, comprising 10 strains from 8 species across 4 distinct genera. In total, 2253 microbial colonies were imaged at 9 different mid-infrared wavelengths. Machine learning classification correctly identified up to 94.4% ± 1.6 of colonies fingerprints, efficiently discriminating even closely related strains. Reducing the number of wavelengths to 4 maintained high classification performance, demonstrating the method's robustness. The resulting system is faster and simpler than existing FTIR imaging systems, making it a promising tool for microbial identification.
我们描述了一种使用直接频率红外(DFIR)多光谱成像的新型微生物鉴定技术的概念验证。这种方法将量子级联激光器(QCL)光源与微测辐射热计阵列以无透镜配置相结合,以捕获微生物菌落的详细多光谱图像。这些光学指纹融合了形态和光谱信息,无需染色或挑取菌落。获取了一个概念验证数据库,其中包括来自4个不同属的8个物种的10个菌株。总共在9个不同的中红外波长下对2253个微生物菌落进行了成像。机器学习分类正确识别了高达94.4%±1.6的菌落指纹,即使是密切相关的菌株也能有效区分。将波长数量减少到4个仍保持了较高的分类性能,证明了该方法的稳健性。所得系统比现有的傅里叶变换红外(FTIR)成像系统更快、更简单,使其成为微生物鉴定的一个有前途的工具。