Suppr超能文献

使用呼吸严重程度评分法开发和验证支气管肺发育不良预测模型

Development and validation of a prediction model for bronchopulmonary dysplasia using respiratory severity score.

作者信息

Kanzawa Takahiro, Kinoshita Fumie, Namba Fumihiko, Tanaka Taihei, Oshiro Makoto, Sugiura Takahiro, Kato Yuichi, Miyata Masafumi, Yamada Yasumasa, Iwata Osuke, Hayakawa Masahiro, Sato Yoshiaki

机构信息

Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan.

Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Japan.

出版信息

Pediatr Res. 2025 Feb 3. doi: 10.1038/s41390-025-03862-z.

Abstract

BACKGROUND

To develop and validate a prediction model for severe bronchopulmonary dysplasia (BPD) that integrates the respiratory severity (RS) score with early postnatal risk factors.

METHODS

This retrospective cohort study included preterm infants born at less than 32 weeks gestation or with a birth weight of less than 1500 g, from Aichi Prefecture (training dataset) and Saitama Medical University (validation dataset) from April 1, 2016, to March 31, 2020. The primary outcome was severe BPD, defined as the use of home oxygen therapy or death due to BPD. We used classification and regression tree (CART) analysis to explore the relationship between outcomes and BPD risk factors in the training dataset.

RESULTS

The incidence of severe BPD was 149 out of 2026 (7.3%) in the training dataset and 35 out of 387 (8.9%) in the validation dataset. CART analysis identified gestational age and the RS score as significant predictors of outcome in the day 7 and day 14 models, with C-statistics of 0.789 and 0.779, respectively. When applied to the validation dataset, these models achieved C-statistics of 0.753 and 0.827, respectively.

CONCLUSION

Our prediction models demonstrated the ability to predict severe BPD, with the RS score being a crucial predictor.

IMPACT

Many existing prediction models for bronchopulmonary dysplasia (BPD) use multiple predictors, and do not provide specific cutoff values, which complicates their clinical application. To address this issue, we developed a prediction model for severe BPD based on a score derived from mean airway pressure and inhaled oxygen concentration at 1-2 weeks of age. This user-friendly model can be easily integrated into clinical practice, facilitating treatment decisions based on predicted probabilities.

摘要

背景

开发并验证一种将呼吸严重程度(RS)评分与出生后早期危险因素相结合的重度支气管肺发育不良(BPD)预测模型。

方法

这项回顾性队列研究纳入了2016年4月1日至2020年3月31日在爱知县(训练数据集)和埼玉医科大学(验证数据集)出生的孕周小于32周或出生体重小于1500克的早产儿。主要结局为重度BPD,定义为使用家庭氧疗或因BPD死亡。我们使用分类与回归树(CART)分析来探索训练数据集中结局与BPD危险因素之间的关系。

结果

训练数据集中重度BPD的发生率为2026例中的149例(7.3%),验证数据集中为387例中的35例(8.9%)。CART分析确定胎龄和RS评分是第7天和第14天模型中结局的显著预测因素,C统计量分别为0.789和0.779。应用于验证数据集时,这些模型的C统计量分别为0.753和0.827。

结论

我们的预测模型显示出预测重度BPD的能力,RS评分是关键预测因素。

影响

许多现有的支气管肺发育不良(BPD)预测模型使用多个预测因素,且未提供具体的临界值,这使其临床应用复杂化。为解决这一问题,我们基于1至2周龄时的平均气道压和吸入氧浓度得出的评分,开发了一种重度BPD预测模型。这个用户友好型模型可轻松融入临床实践,便于根据预测概率做出治疗决策。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验