Suppr超能文献

在CAPRI第47 - 55轮中结合MDockPP和AlphaFold2的混合策略的性能

Performance of Hybrid Strategies Combining MDockPP and AlphaFold2 in CAPRI Rounds 47-55.

作者信息

Duan Rui, Xu Xianjin, Qiu Liming, Zhang Shuang, Zou Xiaoqin

机构信息

Dalton Cardiovascular Research Center, University of Missouri, Columbia, USA.

Department of Physics, University of Missouri, Columbia, USA.

出版信息

Proteins. 2025 Feb 4. doi: 10.1002/prot.26805.

Abstract

CAPRI challenges offer a range of blind tests for biomolecule interaction prediction. This study evaluates the performance of our prediction protocols for the human group Zou and the server group MDockPP in CAPRI rounds 47-55, highlighting the impact of AlphaFold2 (AF2) and the effectiveness of massive sampling approaches. Prior to AlphaFold2's release, our methods relied on homology modeling and docking-based protocols, achieving limited accuracy due to constraints in structural templates and inherent docking limitations. After AlphaFold2's public release, which demonstrated breakthrough accuracy in protein structure prediction, we integrated its multimer models and massive sampling techniques into our protocols. This integration significantly improved prediction accuracy, with human predictions increasing from 1 correct interface of 19 pre-AlphaFold2 to 4 of 8 post-AlphaFold2. The massive sampling approach further enhanced performance, particularly for targets T231 and T233, yielding medium-quality models that default parameters could not achieve.

摘要

CAPRI挑战赛提供了一系列用于生物分子相互作用预测的盲测。本研究评估了我们针对人类组邹和服务器组MDockPP在CAPRI第47 - 55轮中的预测协议性能,突出了AlphaFold2(AF2)的影响以及大规模采样方法的有效性。在AlphaFold2发布之前,我们的方法依赖于同源建模和基于对接的协议,由于结构模板的限制和固有的对接局限性,准确性有限。在AlphaFold2公开发布后,其在蛋白质结构预测方面展示了突破性的准确性,我们将其多聚体模型和大规模采样技术整合到我们的协议中。这种整合显著提高了预测准确性,人类预测从AlphaFold2之前的19个中的1个正确界面增加到AlphaFold2之后的8个中的4个。大规模采样方法进一步提升了性能,特别是对于目标T231和T233,产生了默认参数无法实现的中等质量模型。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验