Duan Rui, Xu Xianjin, Qiu Liming, Zhang Shuang, Zou Xiaoqin
Dalton Cardiovascular Research Center, University of Missouri, Columbia, USA.
Department of Physics, University of Missouri, Columbia, USA.
Proteins. 2025 Feb 4. doi: 10.1002/prot.26805.
CAPRI challenges offer a range of blind tests for biomolecule interaction prediction. This study evaluates the performance of our prediction protocols for the human group Zou and the server group MDockPP in CAPRI rounds 47-55, highlighting the impact of AlphaFold2 (AF2) and the effectiveness of massive sampling approaches. Prior to AlphaFold2's release, our methods relied on homology modeling and docking-based protocols, achieving limited accuracy due to constraints in structural templates and inherent docking limitations. After AlphaFold2's public release, which demonstrated breakthrough accuracy in protein structure prediction, we integrated its multimer models and massive sampling techniques into our protocols. This integration significantly improved prediction accuracy, with human predictions increasing from 1 correct interface of 19 pre-AlphaFold2 to 4 of 8 post-AlphaFold2. The massive sampling approach further enhanced performance, particularly for targets T231 and T233, yielding medium-quality models that default parameters could not achieve.
CAPRI挑战赛提供了一系列用于生物分子相互作用预测的盲测。本研究评估了我们针对人类组邹和服务器组MDockPP在CAPRI第47 - 55轮中的预测协议性能,突出了AlphaFold2(AF2)的影响以及大规模采样方法的有效性。在AlphaFold2发布之前,我们的方法依赖于同源建模和基于对接的协议,由于结构模板的限制和固有的对接局限性,准确性有限。在AlphaFold2公开发布后,其在蛋白质结构预测方面展示了突破性的准确性,我们将其多聚体模型和大规模采样技术整合到我们的协议中。这种整合显著提高了预测准确性,人类预测从AlphaFold2之前的19个中的1个正确界面增加到AlphaFold2之后的8个中的4个。大规模采样方法进一步提升了性能,特别是对于目标T231和T233,产生了默认参数无法实现的中等质量模型。