Univ. Lille, CNRS, UMR8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France.
Biomolecular Modeling Laboratory, The Francis Crick Institute, London, UK.
Proteins. 2023 Dec;91(12):1658-1683. doi: 10.1002/prot.26609. Epub 2023 Oct 31.
We present the results for CAPRI Round 54, the 5th joint CASP-CAPRI protein assembly prediction challenge. The Round offered 37 targets, including 14 homodimers, 3 homo-trimers, 13 heterodimers including 3 antibody-antigen complexes, and 7 large assemblies. On average ~70 CASP and CAPRI predictor groups, including more than 20 automatics servers, submitted models for each target. A total of 21 941 models submitted by these groups and by 15 CAPRI scorer groups were evaluated using the CAPRI model quality measures and the DockQ score consolidating these measures. The prediction performance was quantified by a weighted score based on the number of models of acceptable quality or higher submitted by each group among their five best models. Results show substantial progress achieved across a significant fraction of the 60+ participating groups. High-quality models were produced for about 40% of the targets compared to 8% two years earlier. This remarkable improvement is due to the wide use of the AlphaFold2 and AlphaFold2-Multimer software and the confidence metrics they provide. Notably, expanded sampling of candidate solutions by manipulating these deep learning inference engines, enriching multiple sequence alignments, or integration of advanced modeling tools, enabled top performing groups to exceed the performance of a standard AlphaFold2-Multimer version used as a yard stick. This notwithstanding, performance remained poor for complexes with antibodies and nanobodies, where evolutionary relationships between the binding partners are lacking, and for complexes featuring conformational flexibility, clearly indicating that the prediction of protein complexes remains a challenging problem.
我们呈现了 CAPRI 第 54 轮的结果,这是第 5 次 CASP-CAPRI 蛋白质组装预测挑战赛。这一轮提供了 37 个目标,包括 14 个同源二聚体、3 个同源三聚体、13 个异源二聚体,包括 3 个抗体-抗原复合物,以及 7 个大组装体。平均有~70 个 CASP 和 CAPRI 预测器组,包括 20 多个自动化服务器,为每个目标提交了模型。这些组和 15 个 CAPRI 评分组总共提交了 21941 个模型,使用 CAPRI 模型质量度量和整合这些度量的 DockQ 分数对这些模型进行了评估。预测性能通过每个组在其五个最佳模型中提交的具有可接受质量或更高质量的模型数量的加权分数来量化。结果表明,在 60 多个参与组中的很大一部分取得了实质性进展。与两年前的 8%相比,大约有 40%的目标产生了高质量的模型。这种显著的改进是由于广泛使用了 AlphaFold2 和 AlphaFold2-Multimer 软件及其提供的置信度指标。值得注意的是,通过操纵这些深度学习推理引擎、丰富多个序列比对或集成高级建模工具来扩展候选解决方案的采样,使表现最佳的组能够超越作为基准的标准 AlphaFold2-Multimer 版本的性能。尽管如此,对于缺乏结合伴侣之间进化关系的抗体和纳米抗体复合物,以及具有构象灵活性的复合物,性能仍然很差,这清楚地表明蛋白质复合物的预测仍然是一个具有挑战性的问题。