Suppr超能文献

使用 AlphaFold 在 CASP15 中进行大规模采样以提高多聚体预测。

Improved multimer prediction using massive sampling with AlphaFold in CASP15.

机构信息

Division of Bioinformatics, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden.

出版信息

Proteins. 2023 Dec;91(12):1734-1746. doi: 10.1002/prot.26562. Epub 2023 Aug 7.

Abstract

AlphaFold2 has revolutionized structure prediction by achieving high accuracy comparable to experimentally determined structures. However, there is still room for improvement, especially for challenging cases like multimers. A key to the success of AlphaFold is its ability to assess and rank its own predictions. Our basic idea for the Wallner group in CASP15 was to exploit this excellent scoring function in AlphaFold by massive sampling. To achieve this goal, we conducted AlphaFold runs using six different settings, using templates, without templates, and with an increased number of recycles for both multimer v1 and v2 weights. In all instances, we enabled dropout layers during inference, allowing for sampling of uncertainty and enhancing the diversity of the generated models. In total, 274 289 models were generated for the 38 targets in CASP15, with a median of 4810 models per target. Of these 38 targets, 10 were high quality, 11 were medium quality, 11 were acceptable, and only 6 were incorrect. The improvement over the baseline method, NBIS-AF2-multimer, is substantial, with the mean DockQ increasing from 0.43 to 0.56, with several targets showing a DockQ score increase of +0.6 units. Remarkable, considering Wallner and NBIS-AF2-multimer were using identical input data. The success can be attributed to the diversified sampling using dropout with different settings and, in particular, the use of multimer v1, which is much more susceptible to sampling compared with v2. The method is available here: http://wallnerlab.org/AFsample/.

摘要

AlphaFold2 通过实现与实验确定结构相当的高精度,彻底改变了结构预测。然而,仍有改进的空间,特别是对于多聚体等具有挑战性的情况。AlphaFold 成功的关键在于其评估和排序自身预测的能力。我们在 CASP15 中的 Wallner 小组的基本想法是通过大规模采样利用 AlphaFold 的出色评分功能。为了实现这一目标,我们使用了六个不同的设置进行 AlphaFold 运行,使用模板、不使用模板,并增加了多聚体 v1 和 v2 权重的循环次数。在所有情况下,我们在推理过程中启用了 dropout 层,允许对不确定性进行采样,并增强生成模型的多样性。总共为 CASP15 的 38 个目标生成了 274289 个模型,每个目标的中位数为 4810 个模型。在这 38 个目标中,有 10 个是高质量的,11 个是中等质量的,11 个是可接受的,只有 6 个是不正确的。与基线方法 NBIS-AF2-multimer 相比,这一改进是显著的,平均 DockQ 从 0.43 增加到 0.56,有几个目标的 DockQ 得分增加了+0.6 个单位。值得注意的是,Wallner 和 NBIS-AF2-multimer 使用了相同的输入数据。成功可以归因于使用不同设置的 dropout 进行多样化采样,特别是使用 v1 多聚体,与 v2 相比,v1 多聚体更容易受到采样的影响。该方法可在此处获得:http://wallnerlab.org/AFsample/。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验