Suppr超能文献

一种基于注意力的深度神经网络模型,用于从多组学数据中在单细胞水平检测顺式调控元件。

An Attention-Based Deep Neural Network Model to Detect Cis-Regulatory Elements at the Single-Cell Level From Multi-Omics Data.

作者信息

Murakami Ken, Iida Keita, Okada Mariko

机构信息

Laboratory for Cell Systems, Institute for Protein Research, Osaka University, Suita, Japan.

Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Japan.

出版信息

Genes Cells. 2025 Mar;30(2):e70000. doi: 10.1111/gtc.70000.

Abstract

Cis-regulatory elements (cREs) play a crucial role in regulating gene expression and determining cell differentiation and state transitions. To capture the heterogeneous transitions of cell states associated with these processes, detecting cRE activity at the single-cell level is essential. However, current analytical methods can only capture the average behavior of cREs in cell populations, thereby obscuring cell-specific variations. To address this limitation, we proposed an attention-based deep neural network framework that integrates DNA sequences, genomic distances, and single-cell multi-omics data to detect cREs and their activities in individual cells. Our model shows higher accuracy in identifying cREs within single-cell multi-omics data from healthy human peripheral blood mononuclear cells than other existing methods. Furthermore, it clusters cells more precisely based on predicted cRE activities, enabling a finer differentiation of cell states. When applied to publicly available single-cell data from patients with glioma, the model successfully identified tumor-specific SOX2 activity. Additionally, it revealed the heterogeneous activation of the ZEB1 transcription factor, a regulator of epithelial-to-mesenchymal transition-related genes, which conventional methods struggle to detect. Overall, our model is a powerful tool for detecting cRE regulation at the single-cell level, which may contribute to revealing drug resistance mechanisms in cell sub-populations.

摘要

顺式调控元件(cREs)在调节基因表达以及决定细胞分化和状态转变中起着至关重要的作用。为了捕捉与这些过程相关的细胞状态的异质性转变,在单细胞水平检测cRE活性至关重要。然而,目前的分析方法只能捕捉细胞群体中cREs的平均行为,从而掩盖了细胞特异性的变化。为了解决这一局限性,我们提出了一种基于注意力的深度神经网络框架,该框架整合了DNA序列、基因组距离和单细胞多组学数据,以检测单个细胞中的cREs及其活性。我们的模型在从健康人外周血单核细胞的单细胞多组学数据中识别cREs方面比其他现有方法具有更高的准确性。此外,它基于预测的cRE活性更精确地对细胞进行聚类,从而能够更精细地区分细胞状态。当应用于来自胶质瘤患者的公开可用单细胞数据时,该模型成功识别出肿瘤特异性的SOX2活性。此外,它还揭示了ZEB1转录因子的异质性激活,ZEB1是上皮-间质转化相关基因的调节因子,传统方法难以检测到这种激活。总体而言,我们的模型是在单细胞水平检测cRE调控的有力工具,这可能有助于揭示细胞亚群中的耐药机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3acf/11794194/01cb15485947/GTC-30-0-g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验