Suppr超能文献

利用 SCATE 进行单细胞 ATAC-seq 信号提取和增强。

Single-cell ATAC-seq signal extraction and enhancement with SCATE.

机构信息

Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD, 21205, USA.

出版信息

Genome Biol. 2020 Jul 3;21(1):161. doi: 10.1186/s13059-020-02075-3.

Abstract

Single-cell sequencing assay for transposase-accessible chromatin (scATAC-seq) is the state-of-the-art technology for analyzing genome-wide regulatory landscapes in single cells. Single-cell ATAC-seq data are sparse and noisy, and analyzing such data is challenging. Existing computational methods cannot accurately reconstruct activities of individual cis-regulatory elements (CREs) in individual cells or rare cell subpopulations. We present a new statistical framework, SCATE, that adaptively integrates information from co-activated CREs, similar cells, and publicly available regulome data to substantially increase the accuracy for estimating activities of individual CREs. We demonstrate that SCATE can be used to better reconstruct the regulatory landscape of a heterogeneous sample.

摘要

单细胞测序分析可及染色质(scATAC-seq)是分析单细胞全基因组调控景观的最新技术。单细胞 ATAC-seq 数据稀疏且嘈杂,分析此类数据具有挑战性。现有的计算方法不能准确重建单个顺式调控元件(CRE)在单个细胞或稀有细胞亚群中的活性。我们提出了一种新的统计框架 SCATE,它自适应地整合来自共激活 CRE、相似细胞和公开可用调控组数据的信息,从而大大提高了估计单个 CRE 活性的准确性。我们证明了 SCATE 可用于更好地重建异质样本的调控景观。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02ea/7333383/ded401b5e2a6/13059_2020_2075_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验