Suppr超能文献

利用 SCATE 进行单细胞 ATAC-seq 信号提取和增强。

Single-cell ATAC-seq signal extraction and enhancement with SCATE.

机构信息

Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD, 21205, USA.

出版信息

Genome Biol. 2020 Jul 3;21(1):161. doi: 10.1186/s13059-020-02075-3.

Abstract

Single-cell sequencing assay for transposase-accessible chromatin (scATAC-seq) is the state-of-the-art technology for analyzing genome-wide regulatory landscapes in single cells. Single-cell ATAC-seq data are sparse and noisy, and analyzing such data is challenging. Existing computational methods cannot accurately reconstruct activities of individual cis-regulatory elements (CREs) in individual cells or rare cell subpopulations. We present a new statistical framework, SCATE, that adaptively integrates information from co-activated CREs, similar cells, and publicly available regulome data to substantially increase the accuracy for estimating activities of individual CREs. We demonstrate that SCATE can be used to better reconstruct the regulatory landscape of a heterogeneous sample.

摘要

单细胞测序分析可及染色质(scATAC-seq)是分析单细胞全基因组调控景观的最新技术。单细胞 ATAC-seq 数据稀疏且嘈杂,分析此类数据具有挑战性。现有的计算方法不能准确重建单个顺式调控元件(CRE)在单个细胞或稀有细胞亚群中的活性。我们提出了一种新的统计框架 SCATE,它自适应地整合来自共激活 CRE、相似细胞和公开可用调控组数据的信息,从而大大提高了估计单个 CRE 活性的准确性。我们证明了 SCATE 可用于更好地重建异质样本的调控景观。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02ea/7333383/ded401b5e2a6/13059_2020_2075_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验