Rizzuto Carmen, Nucera Antonello, Barba Castagnaro Irene, Barberi Riccardo C, Castriota Marco
Department of Physics, University of Calabria Ponte Bucci, Cubo 33B, 87036 Rende, CS, Italy.
CNR-Nanotec c/o Department of Physics, University of Calabria Ponte Bucci, 87036 Rende, CS, Italy.
Biomimetics (Basel). 2025 May 11;10(5):308. doi: 10.3390/biomimetics10050308.
Raman spectroscopy is one of the best techniques for obtaining information concerning the physical-chemical interactions between a lipid and a solvent. Phospholipids in water are the main elements of cell membranes and, by means of their chemical and physical structures, their cells can interact with other biological molecules (i.e., proteins and vitamins) and express their own biological functions. Phospholipids, due to their amphiphilic structure, form biomimetic membranes which are useful for studying cellular interactions and drug delivery. Synthetic systems such as DPhPC-based liposomes replicate the key properties of biological membranes. Among the different models, phospholipid mimetic membrane models of have been greatly supported. In this work, a biomimetic system, a deuterium solution (50 mM) of the synthetic phospholipid 1,2-diphytanoyl-sn-glycero-3-phosphocholine (DPhDC), is studied using μ-Raman spectroscopy in a wide temperature range from -181.15 °C up to 22.15 °C, including the following temperatures: -181.15 °C, -146.15 °C, -111.15 °C, -76.15 °C, -61.15 °C, -46.15 °C, -31.15 °C, -16.15 °C, -1.15 °C, 14.15 °C, and 22.15 °C. Based on the Raman evidence, phase transitions as a function of temperature are shown and grouped into five classes, where the corresponding Raman modes describe the stretching of the (C-N) bond in the choline head group (gauche) and the asymmetric stretching of the (O-P-O) bond. The acquisition temperature of each Raman spectrum characterizes the rocking mode of the methylene of the acyl chain. These findings enhance our understanding of the role of artificial biomimetic lipids in complex phospholipid membranes and provide valuable insights for optimizing their use in biosensing applications. Although the phase stability of DPhPC is known, the collected Raman data suggest subtle molecular rearrangements, possibly due to hydration and second-order transitions, which are relevant for membrane modeling and biosensing applications.
拉曼光谱是获取有关脂质与溶剂之间物理化学相互作用信息的最佳技术之一。水中的磷脂是细胞膜的主要成分,通过其化学和物理结构,其细胞可以与其他生物分子(即蛋白质和维生素)相互作用并发挥自身的生物学功能。磷脂由于其两亲结构,形成了对研究细胞相互作用和药物递送有用的仿生膜。诸如基于二棕榈酰磷脂酰胆碱(DPhPC)的脂质体等合成系统复制了生物膜的关键特性。在不同模型中,磷脂模拟膜模型得到了大力支持。在这项工作中,使用μ-拉曼光谱在从-181.15°C到22.15°C的宽温度范围内研究了一种仿生系统,即合成磷脂1,2-二植烷酰基-sn-甘油-3-磷酸胆碱(DPhDC)的氘溶液(50 mM),包括以下温度:-181.15°C、-146.15°C、-111.15°C、-76.15°C、-61.15°C、-46.15°C、-31.15°C、-16.15°C、-1.15°C、14.15°C和22.15°C。基于拉曼证据,展示了随温度变化的相变,并将其分为五类,其中相应的拉曼模式描述了胆碱头部基团(gauche)中(C-N)键的拉伸以及(O-P-O)键中的不对称拉伸。每个拉曼光谱的采集温度表征了酰基链亚甲基的摇摆模式。这些发现增进了我们对人工仿生脂质在复杂磷脂膜中作用的理解,并为优化其在生物传感应用中的使用提供了有价值的见解。尽管DPhPC的相稳定性是已知的,但收集到的拉曼数据表明可能存在微妙的分子重排,这可能是由于水合作用和二级转变引起的,这与膜建模和生物传感应用相关。