Suppr超能文献

告别金属:借助生物可吸收血管支架和新型抗增殖药物迈向未来。

Moving away from metal: Step toward the future with bioresorbable vascular scaffolds and novel antiproliferative agents.

作者信息

Warren Blair E, Tan Kong-Teng, Rajan Dheeraj K, Witheford Miranda, Crawford Sean, Jaberi Arash, Mafeld Sebastian

机构信息

Department of Medical Imaging, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.

Division of Vascular and Interventional Radiology, Joint Department of Medical Imaging, University Health Network, Toronto, Ontario, Canada.

出版信息

JVS Vasc Sci. 2024 Dec 18;6:100277. doi: 10.1016/j.jvssci.2024.100277. eCollection 2025.

Abstract

BACKGROUND

Peripheral arterial disease (PAD) is a common source of morbidity and mortality globally and is expected to raise increase in prevalence. Many endovascular techniques exist to manage PAD; however, there remains room for improvement, especially as it relates to below-the-knee vessels. Recent evidence and devices are leading to a resurgence of interest in bioresorbable vascular scaffolds and the -limus family of antiproliferative drugs in the PAD treatment space.

METHODS

This nonsystematic review examines emerging technology for treatment of PAD with a specific focus on below-the-knee vessels and bioresorbable vascular scaffolds. Additional emerging and early technology such as novel delivery platforms are also briefly discussed with directions of future research highlighted.

RESULTS

Bioresorbable vascular scaffold biomechanics and history are highlighted. Foundational knowledge of antiproliferative agents and evolving agents in peripheral vascular disease are also described.

CONCLUSIONS

Bioresorbable vascular scaffolds are an additional endovascular tool for the treatment of peripheral vascular disease. The integration with an antiproliferative agent may result in improved patency and performance; however, there is a paucity of data in the literature at present.

摘要

背景

外周动脉疾病(PAD)是全球发病率和死亡率的常见原因,预计患病率还会上升。存在多种血管内技术来治疗PAD;然而,仍有改进空间,特别是对于膝下血管。最近的证据和设备引发了对生物可吸收血管支架以及PAD治疗领域中抗增殖药物雷帕霉素家族的兴趣再度兴起。

方法

本非系统性综述研究了治疗PAD的新兴技术,特别关注膝下血管和生物可吸收血管支架。还简要讨论了其他新兴和早期技术,如新型递送平台,并突出了未来研究方向。

结果

强调了生物可吸收血管支架的生物力学和历史。还描述了外周血管疾病中抗增殖药物和不断发展的药物的基础知识。

结论

生物可吸收血管支架是治疗外周血管疾病的另一种血管内工具。与抗增殖药物结合可能会提高通畅率和性能;然而,目前文献中的数据较少。

相似文献

1
Moving away from metal: Step toward the future with bioresorbable vascular scaffolds and novel antiproliferative agents.
JVS Vasc Sci. 2024 Dec 18;6:100277. doi: 10.1016/j.jvssci.2024.100277. eCollection 2025.
3
Bioresorbable Scaffolds for Below-the-Knee Arterial Disease: A Literature Review of New Developments.
Rev Cardiovasc Med. 2024 Apr 3;25(4):133. doi: 10.31083/j.rcm2504133. eCollection 2024 Apr.
4
Current status and future perspectives of bioresorbable stents in peripheral arterial disease.
J Vasc Surg. 2016 Oct;64(4):1151-1159.e1. doi: 10.1016/j.jvs.2016.05.044. Epub 2016 Jul 26.
5
Two-year follow-up of bioresorbable vascular scaffolds in severe infra-popliteal arterial disease.
Vascular. 2021 Jun;29(3):355-362. doi: 10.1177/1708538120954947. Epub 2020 Sep 14.
6
Stenting for peripheral artery disease of the lower extremities: an evidence-based analysis.
Ont Health Technol Assess Ser. 2010;10(18):1-88. Epub 2010 Sep 1.
10
Mechanical properties and degradation of drug eluted bioresorbable vascular scaffolds prepared by three-dimensional printing technology.
J Biomater Sci Polym Ed. 2019 May;30(7):547-560. doi: 10.1080/09205063.2019.1586303. Epub 2019 Apr 7.

本文引用的文献

1
Evaluation of an Infrapopliteal Drug-Eluting Resorbable Scaffold: Design Methodology for the LIFE-BTK Randomized Controlled Trial.
J Soc Cardiovasc Angiogr Interv. 2023 May 19;2(4):100964. doi: 10.1016/j.jscai.2023.100964. eCollection 2023 Jul-Aug.
2
Polydiolcitrate-MoS Composite for 3D Printing Radio-Opaque, Bioresorbable Vascular Scaffolds.
ACS Appl Mater Interfaces. 2024 Aug 28;16(34):45422-45432. doi: 10.1021/acsami.4c07364. Epub 2024 Aug 5.
3
Surgery or endovascular therapy for patients with chronic limb-threatening ischemia requiring infrapopliteal interventions.
J Vasc Surg. 2024 Nov;80(5):1515-1524. doi: 10.1016/j.jvs.2024.05.049. Epub 2024 Jun 21.
4
Detection of Blood Clots Using a Whole Stent as an Active Implantable Biosensor.
Adv Sci (Weinh). 2024 Jun;11(21):e2304748. doi: 10.1002/advs.202304748. Epub 2024 Feb 11.
6
Disparities in Diagnosis, Treatment, and Outcomes of Peripheral Artery Disease: JACC Scientific Statement.
J Am Coll Cardiol. 2023 Dec 12;82(24):2312-2328. doi: 10.1016/j.jacc.2023.09.830.
7
Fucoidan/collagen composite coating on magnesium alloy for better corrosion resistance and pro-endothelialization potential.
Int J Biol Macromol. 2024 Jan;255:128044. doi: 10.1016/j.ijbiomac.2023.128044. Epub 2023 Nov 20.
8
Biodegradable AZ91 magnesium alloy/sirolimus/poly D, L-lactic-co-glycolic acid-based substrate for cardiovascular device application.
J Biomed Mater Res B Appl Biomater. 2024 Jan;112(1):e35350. doi: 10.1002/jbm.b.35350. Epub 2023 Nov 15.
9
Drug-Eluting Resorbable Scaffold versus Angioplasty for Infrapopliteal Artery Disease.
N Engl J Med. 2024 Jan 4;390(1):9-19. doi: 10.1056/NEJMoa2305637. Epub 2023 Oct 25.
10
Pre-clinical investigation of liquid sirolimus for local drug delivery.
Front Cardiovasc Med. 2023 Sep 15;10:1184816. doi: 10.3389/fcvm.2023.1184816. eCollection 2023.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验