Suppr超能文献

为定制植物数据量身定制卷积神经网络。

Tailoring convolutional neural networks for custom botanical data.

作者信息

Sykes Jamie R, Denby Katherine J, Franks Daniel W

机构信息

Department of Computer Science University of York Deramore Lane York YO10 5GH Yorkshire United Kingdom.

Centre for Novel Agricultural Products, Department of Biology University of York Wentworth Way York YO10 5DD Yorkshire United Kingdom.

出版信息

Appl Plant Sci. 2024 Oct 21;13(1):e11620. doi: 10.1002/aps3.11620. eCollection 2025 Jan-Feb.

Abstract

PREMISE

Automated disease, weed, and crop classification with computer vision will be invaluable in the future of agriculture. However, existing model architectures like ResNet, EfficientNet, and ConvNeXt often underperform on smaller, specialised datasets typical of such projects.

METHODS

We address this gap with informed data collection and the development of a new convolutional neural network architecture, PhytNet. Utilising a novel dataset of infrared cocoa tree images, we demonstrate PhytNet's development and compare its performance with existing architectures. Data collection was informed by spectroscopy data, which provided useful insights into the spectral characteristics of cocoa trees. Cocoa was chosen as a focal species due to the diverse pathology of its diseases, which pose significant challenges for detection.

RESULTS

ResNet18 showed some signs of overfitting, while EfficientNet variants showed distinct signs of overfitting. By contrast, PhytNet displayed excellent attention to relevant features, almost no overfitting, and an exceptionally low computation cost of 1.19 GFLOPS.

CONCLUSIONS

We show that PhytNet is a promising candidate for rapid disease or plant classification and for precise localisation of disease symptoms for autonomous systems. We also show that the most informative light spectra for detecting cocoa disease are outside the visible spectrum and that efforts to detect disease in cocoa should be focused on local symptoms, rather than the systemic effects of disease.

摘要

前提

利用计算机视觉进行自动疾病、杂草和作物分类在未来农业中将具有巨大价值。然而,诸如ResNet、EfficientNet和ConvNeXt等现有模型架构在这类项目典型的较小、专门数据集上往往表现不佳。

方法

我们通过明智的数据收集和开发一种新的卷积神经网络架构PhytNet来弥补这一差距。利用一个新颖的红外可可树图像数据集,我们展示了PhytNet的开发过程,并将其性能与现有架构进行比较。数据收集参考了光谱数据,这些数据为可可树的光谱特征提供了有用的见解。由于可可树疾病的多样性病理给检测带来重大挑战,因此选择可可作为重点研究物种。

结果

ResNet18显示出一些过拟合迹象,而EfficientNet变体则显示出明显的过拟合迹象。相比之下,PhytNet对相关特征表现出极佳的关注,几乎没有过拟合现象,并且计算成本极低,仅为1.19 GFLOPS。

结论

我们表明,PhytNet是用于快速疾病或植物分类以及为自主系统精确定位疾病症状的一个有前景的候选方案。我们还表明,检测可可疾病最具信息量的光谱在可见光谱之外,并且检测可可疾病的工作应专注于局部症状,而非疾病的全身影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验