Suppr超能文献

推进牙周病诊断:利用先进人工智能技术分析锥形束计算机断层扫描中的牙周骨丧失模式

Advancing periodontal diagnosis: harnessing advanced artificial intelligence for patterns of periodontal bone loss in cone-beam computed tomography.

作者信息

Kurt-Bayrakdar Sevda, Bayrakdar İbrahim Şevki, Kuran Alican, Çelik Özer, Orhan Kaan, Jagtap Rohan

机构信息

Department of Periodontology, Faculty of Dentistry, Eskişehir Osmangazi University, Eskisehir, 26240, Turkey.

Division of Oral and Maxillofacial Radiology, Department of Care Planning and Restorative Sciences, University of Mississippi Medical Center School of Dentistry, Jackson, MS, 39216, United States.

出版信息

Dentomaxillofac Radiol. 2025 May 1;54(4):268-278. doi: 10.1093/dmfr/twaf011.

Abstract

OBJECTIVES

The current study aimed to automatically detect tooth presence, tooth numbering, and types of periodontal bone defects from cone-beam CT (CBCT) images using a segmentation method with an advanced artificial intelligence (AI) algorithm.

METHODS

This study utilized a dataset of CBCT volumes collected from 502 individual subjects. Initially, 250 CBCT volumes were used for automatic tooth segmentation and numbering. Subsequently, CBCT volumes from 251 patients diagnosed with periodontal disease were employed to train an AI system to identify various periodontal bone defects using a segmentation method in web-based labelling software. In the third stage, CBCT images from 251 periodontally healthy subjects were combined with images from 251 periodontally diseased subjects to develop an AI model capable of automatically classifying patients as either periodontally healthy or periodontally diseased. Statistical evaluation included receiver operating characteristic curve analysis and confusion matrix model.

RESULTS

The area under the receiver operating characteristic curve (AUC) values for the models developed to segment teeth, total alveolar bone loss, supra-bony defects, infra-bony defects, perio-endo lesions, buccal defects, and furcation defects were 0.9594, 0.8499, 0.5052, 0.5613 (with cropping, AUC: 0.7488), 0.8893, 0.6780 (with cropping, AUC: 0.7592), and 0.6332 (with cropping, AUC: 0.8087), respectively. Additionally, the classification CNN model achieved an accuracy of 80% for healthy individuals and 76% for unhealthy individuals.

CONCLUSIONS

This study employed AI models on CBCT images to automatically detect tooth presence, numbering, and various periodontal bone defects, achieving high accuracy and demonstrating potential for enhancing dental diagnostics and patient care.

摘要

目的

本研究旨在使用具有先进人工智能(AI)算法的分割方法,从锥束CT(CBCT)图像中自动检测牙齿的存在、牙齿编号以及牙周骨缺损的类型。

方法

本研究使用了从502名个体受试者收集的CBCT容积数据集。最初,250个CBCT容积用于自动牙齿分割和编号。随后,来自251名被诊断患有牙周病的患者的CBCT容积被用于训练一个AI系统,该系统使用基于网络的标记软件中的分割方法来识别各种牙周骨缺损。在第三阶段,将来自251名牙周健康受试者的CBCT图像与来自251名牙周病患者的图像相结合,以开发一个能够自动将患者分类为牙周健康或牙周病患者的AI模型。统计评估包括受试者操作特征曲线分析和混淆矩阵模型。

结果

用于分割牙齿、总牙槽骨丧失、骨上缺损、骨下缺损、牙周牙髓联合病变、颊侧缺损和根分叉缺损的模型的受试者操作特征曲线(AUC)下面积值分别为0.9594、0.8499、0.5052、0.5613(裁剪后,AUC:0.7488)、0.8893、0.6780(裁剪后,AUC:0.7592)和0.6332(裁剪后,AUC:0.8087)。此外,分类卷积神经网络模型对健康个体的准确率为80%,对不健康个体的准确率为76%。

结论

本研究在CBCT图像上使用AI模型自动检测牙齿的存在、编号以及各种牙周骨缺损,取得了较高的准确率,并显示出在增强牙科诊断和患者护理方面的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27ff/12038236/863a9b3824de/twaf011f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验