Policlínica Piquet Carneiro, Universidade do Estado do Rio de Janeiro, Rio de Janeiro 20950-003, Brazil.
Instituto de Computação, Universidade Federal Fluminense, Niterói 24210-310, Brazil.
Sensors (Basel). 2021 Mar 12;21(6):2013. doi: 10.3390/s21062013.
Resolution plays an essential role in oral imaging for periodontal disease assessment. Nevertheless, due to limitations in acquisition tools, a considerable number of oral examinations have low resolution, making the evaluation of this kind of lesion difficult. Recently, the use of deep-learning methods for image resolution improvement has seen an increase in the literature. In this work, we performed two studies to evaluate the effects of using different resolution improvement methods (nearest, bilinear, bicubic, Lanczos, SRCNN, and SRGAN). In the first one, specialized dentists visually analyzed the quality of images treated with these techniques. In the second study, we used those methods as different pre-processing steps for inputs of convolutional neural network (CNN) classifiers (Inception and ResNet) and evaluated whether this process leads to better results. The deep-learning methods lead to a substantial improvement in the visual quality of images but do not necessarily promote better classifier performance.
分辨率在牙周病评估的口腔成像中起着至关重要的作用。然而,由于采集工具的限制,相当数量的口腔检查的分辨率较低,使得这类病变的评估变得困难。最近,文献中越来越多地使用深度学习方法来提高图像分辨率。在这项工作中,我们进行了两项研究,以评估使用不同分辨率增强方法(最近邻、双线性、双三次、Lanczos、SRCNN 和 SRGAN)的效果。在第一项研究中,专业牙医对这些技术处理后的图像质量进行了视觉分析。在第二项研究中,我们将这些方法用作卷积神经网络(CNN)分类器(Inception 和 ResNet)的不同预处理步骤,并评估该过程是否会带来更好的结果。深度学习方法显著提高了图像的视觉质量,但不一定能提高分类器的性能。