Suppr超能文献

利用CT钙评分扫描中的冠状动脉钙化和心外膜脂肪组织评估预测阻塞性冠状动脉疾病。

Prediction of obstructive coronary artery disease using coronary calcification and epicardial adipose tissue assessments from CT calcium scoring scans.

作者信息

Lee Juhwan, Hu Tao, Williams Michelle C, Hoori Ammar, Wu Hao, Kim Justin N, Newby David E, Gilkeson Robert, Rajagopalan Sanjay, Wilson David L

机构信息

Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA.

BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK.

出版信息

J Cardiovasc Comput Tomogr. 2025 Mar-Apr;19(2):224-231. doi: 10.1016/j.jcct.2025.01.007. Epub 2025 Feb 4.

Abstract

BACKGROUND

Low-cost/no-cost non-contrast CT calcium scoring (CTCS) exams can provide direct evidence of coronary atherosclerosis. In this study, using features from CTCS images, we developed a novel machine learning model to predict obstructive coronary artery disease (CAD), as defined by the coronary artery disease-reporting and data system (CAD-RADS).

METHODS

This study analyzed 1324 patients from the SCOT-HEART trial who underwent both CTCS and CT angiography. Obstructive CAD was defined as CAD-RADS 4A-5, while CAD-RADS 0-3 were considered non-obstructive CAD. We analyzed clinical, Agatston-score-derived, and epicardial fat-omics features to predict obstructive CAD. The most predictive features were selected using elastic net logistic regression and used to train a CatBoost model. Model performance was evaluated using 1000 repeated five-fold cross-validation and survival analyses to predict major adverse cardiovascular event (MACE) and revascularization. Generalizability was assessed using an external validation set of 2316 patients for survival predictions.

RESULTS

Among the 1324 patients, obstructive CAD was identified in 334 patients (25.2 ​%). Elastic net regression identified the top 14 features (5 clinical, 2 Agatston-score-derived, and 7 fat-omics). The proposed method achieved excellent performance for classifying obstructive CAD, with an AUC of 90.1 ​± ​0.9 ​% and sensitivity/specificity/accuracy of 83.5 ​± ​5.5 ​%/93.7 ​± ​1.9 ​%/82.4 ​± ​2.0 ​%. The inclusion of Agatston-score-derived and fat-omics features significantly improved classification performance. Survival analyses showed that both actual and predicted obstructive CAD significantly differentiated patients who experienced MACE and revascularization.

CONCLUSIONS

We developed a novel machine learning model to predict obstructive CAD from non-contrast CTCS scans. Our findings highlight the potential clinical benefits of CTCS imaging in identifying patients likely to benefit from advanced imaging.

摘要

背景

低成本/无成本的非增强CT冠状动脉钙化评分(CTCS)检查可提供冠状动脉粥样硬化的直接证据。在本研究中,我们利用CTCS图像的特征,开发了一种新型机器学习模型,以预测冠状动脉疾病报告和数据系统(CAD-RADS)所定义的阻塞性冠状动脉疾病(CAD)。

方法

本研究分析了1324例来自SCOT-HEART试验的患者,这些患者同时接受了CTCS和CT血管造影检查。阻塞性CAD定义为CAD-RADS 4A-5,而CAD-RADS 0-3被视为非阻塞性CAD。我们分析了临床、基于阿加斯顿评分得出的以及心外膜脂肪组学特征,以预测阻塞性CAD。使用弹性网逻辑回归选择最具预测性的特征,并用于训练CatBoost模型。使用1000次重复的五折交叉验证和生存分析来评估模型性能,以预测主要不良心血管事件(MACE)和血运重建。使用2316例患者的外部验证集进行生存预测评估模型的可推广性。

结果

在1324例患者中,334例(25.2%)被诊断为阻塞性CAD。弹性网回归确定了前14个特征(5个临床特征、2个基于阿加斯顿评分得出的特征和7个脂肪组学特征)。所提出的方法在分类阻塞性CAD方面表现出色,AUC为90.1±0.9%,敏感性/特异性/准确性分别为83.5±5.5%/93.7±1.9%/82.4±2.0%。纳入基于阿加斯顿评分得出的特征和脂肪组学特征显著提高了分类性能。生存分析表明,实际和预测的阻塞性CAD均能显著区分发生MACE和血运重建的患者。

结论

我们开发了一种新型机器学习模型,用于从非增强CTCS扫描中预测阻塞性CAD。我们的研究结果突出了CTCS成像在识别可能从高级成像中获益的患者方面的潜在临床益处。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验