Suppr超能文献

基于迁移学习的带注意力机制的三维U-net用于非对比剂冠状动脉磁共振血管造影的血管自动分割与重建

Automatic vessel segmentation and reformation of non-contrast coronary magnetic resonance angiography using transfer learning-based three-dimensional U-net with attention mechanism.

作者信息

Lin Lu, Zheng Yijia, Li Yanyu, Jiang Difei, Cao Jian, Wang Jian, Xiao Yueting, Mao Xinsheng, Zheng Chao, Wang Yining

机构信息

Department of Radiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.

Center for Biomedical Imaging Research, School of Biomedical Engineering, Tsinghua University, Beijing, China.

出版信息

J Cardiovasc Magn Reson. 2025;27(1):101126. doi: 10.1016/j.jocmr.2024.101126. Epub 2024 Nov 22.

Abstract

BACKGROUND

Coronary magnetic resonance angiography (CMRA) presents distinct advantages, but its reliance on manual image post-processing is labor-intensive and requires specialized knowledge. This study aims to design and test an efficient artificial intelligence (AI) model capable of automating coronary artery segmentation and reformation from CMRA images for coronary artery disease (CAD) diagnosis.

METHODS

By leveraging transfer learning from a pre-existing coronary computed tomography angiography model, a three-dimensional attention-aware U-Net was established, trained, and validated on a dataset of 104 subjects' CMRA. Furthermore, an independent clinical evaluation was conducted on an additional cohort of 70 patients. The AI model's performance in segmenting coronary arteries was assessed using the Dice similarity coefficient (DSC) and recall. The comparison between the AI model and manual processing by experienced radiologists on vessel reformation was based on reformatted image quality (rIQ) scoring, post-processing time, and the number of necessary user interactions. The diagnostic performance of AI-segmented CMRA for significant stenosis (≥50% diameter reduction) was evaluated using conventional coronary angiography (CAG) as a reference in sub-set data.

RESULTS

The DSC of the AI model achieved on the training and validation sets were 0.952 and 0.944, with recalls of 0.936 and 0.923, respectively. In the clinical evaluation, the model outperformed manual processes by reducing vessel post-processing time, from 632.6±17.0 s to 77.4±8.9 s, and the number of user interactions from 221±59 to 8±2. The AI post-processed images maintained high rIQ scores comparable to those processed manually (2.7±0.8 vs 2.7±0.6; P = 0.4806). In subjects with CAG, the prevalence of CAD was 71%. The sensitivity, specificity, and accuracy at patient-based analysis were 94%, 71%, and 88%, respectively, by AI post-processed whole-heart CMRA.

CONCLUSION

The AI auto-segmentation system can effectively facilitate CMRA vessel reformation and reduce the time consumption for radiologists. It has the potential to become a standard component of daily workflows, optimizing the clinical application of CMRA in the future.

摘要

背景

冠状动脉磁共振血管造影(CMRA)具有显著优势,但其依赖人工图像后处理,劳动强度大且需要专业知识。本研究旨在设计并测试一种高效的人工智能(AI)模型,该模型能够自动对CMRA图像进行冠状动脉分割和重建,以用于冠状动脉疾病(CAD)的诊断。

方法

通过利用预先存在的冠状动脉计算机断层血管造影模型的迁移学习,建立了一个三维注意力感知U-Net,并在104名受试者的CMRA数据集上进行训练和验证。此外,对另外70名患者的队列进行了独立的临床评估。使用Dice相似系数(DSC)和召回率评估AI模型在分割冠状动脉方面的性能。AI模型与经验丰富的放射科医生在血管重建方面的手动处理之间的比较基于重建图像质量(rIQ)评分、后处理时间和必要的用户交互次数。在亚组数据中,以传统冠状动脉造影(CAG)为参考,评估AI分割的CMRA对显著狭窄(直径减少≥50%)的诊断性能。

结果

AI模型在训练集和验证集上实现的DSC分别为0.952和0.944,召回率分别为0.936和0.923。在临床评估中,该模型通过减少血管后处理时间,从632.6±17.0秒降至77.4±8.9秒,以及将用户交互次数从221±59次降至8±2次,优于手动处理。AI后处理的图像保持了与手动处理相当的高rIQ分数(2.7±0.8对2.7±0.6;P = 0.4806)。在接受CAG检查的受试者中,CAD的患病率为71%。基于患者分析,AI后处理的全心CMRA的敏感性、特异性和准确性分别为94%、71%和88%。

结论

AI自动分割系统可以有效地促进CMRA血管重建,并减少放射科医生的时间消耗。它有可能成为日常工作流程的标准组成部分,在未来优化CMRA的临床应用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验