Meier Malin Kristin, Helfenstein Ramon Andreas, Boschung Adam, Nanavati Andreas, Ruckli Adrian, Lerch Till D, Gerber Nicolas, Jung Bernd, Afacan Onur, Tannast Moritz, Siebenrock Klaus A, Steppacher Simon D, Schmaranzer Florian
Department of Orthopedic Surgery, University Hospital, Inselspital Bern, University of Bern, Freiburgstrasse, Bern, 3010, Switzerland.
Department of Diagnostic, Interventional and Pediatric Radiology, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse, Bern, 3010, Switzerland.
Sci Rep. 2025 Feb 7;15(1):4662. doi: 10.1038/s41598-025-86727-z.
The objective was to use convolutional neural networks (CNNs) for automatic segmentation of hip cartilage and labrum based on 3D MRI. In this retrospective single-center study, CNNs with a U-Net architecture were used to develop a fully automated segmentation model for hip cartilage and labrum from MRI. Direct hip MR arthrographies (01/2020-10/2021) were selected from 100 symptomatic patients. Institutional routine protocol included a 3D T1 mapping sequence, which was used for manual segmentation of hip cartilage and labrum. 80 hips were used for training and the remaining 20 for testing. Model performance was assessed with six evaluation metrics including Dice similarity coefficient (DSC). In addition, model performance was tested on an external dataset (40 patients) with a 3D T2-weighted sequence from a different institution. Inter-rater agreement of manual segmentation served as benchmark for automatic segmentation performance. 100 patients were included (mean age 30 ± 10 years, 64% female patients). Mean DSC for cartilage was 0.92 ± 0.02 (95% confidence interval [CI] 0.92-0.93) and 0.83 ± 0.04 (0.81-0.85) for labrum and comparable (p = 0.232 and 0.297, respectively) to inter-rater agreement of manual segmentation: DSC cartilage 0.93 ± 0.04 (0.92-0.95); DSC labrum 0.82 ± 0.05 (0.80-0.85). When tested on the external dataset, the DSC was 0.89 ± 0.02 (0.88-0.90) and 0.71 ± 0.04 (0.69-0.73) for cartilage and labrum, respectively.The presented deep learning approach accurately segments hip cartilage and labrum from 3D MRI sequences and can potentially be used in clinical practice to provide rapid and accurate 3D MRI models.
目的是基于3D MRI使用卷积神经网络(CNN)对髋关节软骨和盂唇进行自动分割。在这项回顾性单中心研究中,采用具有U-Net架构的CNN开发了一种用于从MRI中对髋关节软骨和盂唇进行全自动分割的模型。从100例有症状的患者中选取直接髋关节MR关节造影(2020年1月 - 2021年10月)。机构常规方案包括一个3D T1映射序列,用于对髋关节软骨和盂唇进行手动分割。80个髋关节用于训练,其余20个用于测试。使用包括Dice相似系数(DSC)在内的六个评估指标评估模型性能。此外,在来自不同机构的具有3D T2加权序列的外部数据集(40例患者)上测试模型性能。手动分割的评分者间一致性用作自动分割性能的基准。纳入100例患者(平均年龄30±10岁,64%为女性患者)。软骨的平均DSC为0.92±0.02(95%置信区间[CI] 0.92 - 0.93),盂唇的平均DSC为0.83±0.04(0.81 - 0.85),与手动分割的评分者间一致性相当(分别为p = 0.232和0.297):软骨DSC为0.93±0.04(0.92 - 0.95);盂唇DSC为0.82±0.05(0.80 - 最大似然估计值(MLE)在贝叶斯推理中起着至关重要的作用,它提供了一种在给定数据和模型假设下估计未知参数的方法。最大似然估计值通过找到使观察到的数据出现概率最大化的参数值来确定。
在贝叶斯框架中,我们处理的是参数的概率分布,而不是点估计。最大似然估计值帮助我们找到在该分布中最有可能产生观察到的数据的参数值。它基于似然函数,该函数衡量了在给定参数值下观察到数据的可能性。
通过最大化似然函数,我们可以获得对未知参数的估计,该估计在某种意义上代表了数据最支持的参数值。这对于许多统计分析和模型拟合任务至关重要,因为它允许我们根据观察到的数据推断出最合理的参数设置。
例如,在一个简单的线性回归模型中,最大似然估计值可以帮助我们找到最佳拟合直线的斜率和截距,使得数据点最有可能出现在该直线附近。
最大似然估计值是贝叶斯推理中用于估计未知参数的重要工具,它通过最大化似然函数来提供数据最支持的参数值估计。
0.85)。在外部数据集上进行测试时,软骨和盂唇的DSC分别为0.89±0.02(0.88 - 0.90)和0.71±0.04(0.69 - 0.73)。所提出的深度学习方法能够从3D MRI序列中准确分割髋关节软骨和盂唇,并有可能在临床实践中用于提供快速准确的3D MRI模型。