Sabanés Zariquiey Francesc, Galvelis Raimondas, Gallicchio Emilio, Chodera John D, Markland Thomas E, De Fabritiis Gianni
Computational Science Laboratory, Universitat Pompeu Fabra, Barcelona Biomedical Research Park (PRBB), C Dr. Aiguader 88, 08003 Barcelona, Spain.
Acellera Labs, C Dr Trueta 183, 08005 Barcelona, Spain.
J Chem Inf Model. 2024 Mar 11;64(5):1481-1485. doi: 10.1021/acs.jcim.3c02031. Epub 2024 Feb 20.
This letter gives results on improving protein-ligand binding affinity predictions based on molecular dynamics simulations using machine learning potentials with a hybrid neural network potential and molecular mechanics methodology (NNP/MM). We compute relative binding free energies with the Alchemical Transfer Method and validate its performance against established benchmarks and find significant enhancements compared with conventional MM force fields like GAFF2.
这封信给出了基于使用具有混合神经网络势和分子力学方法(NNP/MM)的机器学习势的分子动力学模拟来改进蛋白质-配体结合亲和力预测的结果。我们使用炼金术转移方法计算相对结合自由能,并对照既定基准验证其性能,发现与GAFF2等传统分子力学力场相比有显著提升。