Suppr超能文献

BiAF:基于机器视觉的动态山羊群检测与跟踪研究

BiAF: research on dynamic goat herd detection and tracking based on machine vision.

作者信息

Hou Yun, Han Mingjuan, Fan Wei, Jia Xinyu, Gong Zhuo, Han Ding

机构信息

College of Electronic Information Engineering, Inner Mongolia University, Hohhot, 010021, China.

Inner Mongolia State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Hohhot, 010021, China.

出版信息

Sci Rep. 2025 Feb 8;15(1):4754. doi: 10.1038/s41598-025-89231-6.

Abstract

As technology advances, rangeland management is rapidly transitioning toward intelligent systems. To optimize grassland resources and implement scientific grazing practices, livestock grazing monitoring has become a pivotal area of research. Traditional methods, such as manual tracking and wearable monitoring, often disrupt the natural movement and feeding behaviors of grazing livestock, posing significant challenges for in-depth studies of grazing patterns. In this paper, we propose a machine vision-based grazing goat herd detection algorithm that enhances the streamlined ELAN module in YOLOv7-tiny, incorporates an optimized CBAM attention mechanism, refines the SPPCSPC module to reduce the parameter count, and improves the anchor boxes in YOLOv7-tiny to enhance target detection accuracy. The BiAF-YOLOv7 algorithm achieves precision, recall, F1 score, and mAP values of 94.5, 96.7, 94.8, and 96.0%, respectively, on the goat herd dataset. Combined with DeepSORT, our system successfully tracks goat herds, demonstrating the effectiveness of the BiAF-YOLOv7 algorithm as a tool for livestock grazing monitoring. This study not only validates the practicality of the proposed algorithm but also highlights the broader applicability of machine vision-based monitoring in large-scale environments. It provides innovative approaches to achieve grass-animal balance through information-driven methods, such as monitoring and tracking.

摘要

随着技术的进步,牧场管理正在迅速向智能系统转型。为了优化草地资源并实施科学的放牧实践,家畜放牧监测已成为一个关键的研究领域。传统方法,如人工跟踪和可穿戴监测,常常会干扰放牧家畜的自然移动和采食行为,给深入研究放牧模式带来重大挑战。在本文中,我们提出了一种基于机器视觉的放牧山羊群检测算法,该算法增强了YOLOv7-tiny中的简化ELAN模块,融入了优化的CBAM注意力机制,对SPPCSPC模块进行了改进以减少参数数量,并对YOLOv7-tiny中的锚框进行了改进以提高目标检测精度。BiAF-YOLOv7算法在山羊群数据集上分别实现了94.5%、96.7%、94.8%和96.0%的精确率、召回率、F1分数和平均精度均值。结合DeepSORT,我们的系统成功地跟踪了山羊群,证明了BiAF-YOLOv7算法作为家畜放牧监测工具的有效性。本研究不仅验证了所提算法的实用性,还突出了基于机器视觉的监测在大规模环境中的更广泛适用性。它提供了通过信息驱动方法(如监测和跟踪)实现草畜平衡的创新途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6c0/11807150/9701b63c3f19/41598_2025_89231_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验