Suppr超能文献

基于双树复小波变换(RADWT)和机器学习的增强型脑电图认知负荷检测

Enhanced EEG-based cognitive workload detection using RADWT and machine learning.

作者信息

Ghasimi Armin, Shamekhi Sina

机构信息

Faculty of Biomedical Engineering, Sahand University of Technology ,Tabriz, Iran; Biomedical Engineering Research Center, Sahand University of Technology, Sahand New Town, Tabriz, Iran.

Faculty of Biomedical Engineering, Sahand University of Technology ,Tabriz, Iran; Biomedical Engineering Research Center, Sahand University of Technology, Sahand New Town, Tabriz, Iran.

出版信息

Neuroscience. 2025 Mar 17;569:231-244. doi: 10.1016/j.neuroscience.2025.01.068. Epub 2025 Feb 7.

Abstract

Understanding cognitive workload improves learning performance and provides insights into human cognitive processes. Estimating cognitive workload finds practical applications in adaptive learning systems, brain-computer interfaces, and cognitive monitoring. In this work, different levels of cognitive workload are investigated, and a classification approach based on the Rational-Dilation Wavelet Transform (RADWT) is proposed. RADWT excels at capturing the oscillatory behavior of EEG signal sub-bands, offering high precision through its ability to adaptively analyze both temporal and spectral dynamics. Different classifications of machine learning and feature selection techniques were evaluated to get optimum classification accuracy and identify the most effective combination of features for the used dataset. The analysis shows that the most relevant brain region in differentiating cognitive workload levels is the frontal region, along with alpha and theta rhythm sub-bands. Integrating RADWT with a Linear Support Vector Machine (LSVM) and minimum Redundancy Maximum Relevance (mRMR) feature selection method yields notable classification accuracy. Concretely, the model yields accuracies of 96.6% for 0-back vs.3-back, 94.9% for 0-back vs 2-back, 92.3% for 2-back vs 3-back, and 81.7% for the three-class scenario. These results confirm the validity of the method proposed for estimating cognitive workload using the RADWT- and machine learning-based approach. The results also offer insights into neural mechanisms and a foundation for advanced applications in adaptive systems, brain-computer interfaces, and cognitive monitoring.

摘要

理解认知负荷有助于提高学习成绩,并深入了解人类认知过程。估计认知负荷在自适应学习系统、脑机接口和认知监测中有着实际应用。在这项工作中,研究了不同水平的认知负荷,并提出了一种基于有理扩张小波变换(RADWT)的分类方法。RADWT擅长捕捉脑电信号子带的振荡行为,通过其自适应分析时间和频谱动态的能力提供高精度。评估了不同的机器学习分类和特征选择技术,以获得最佳分类准确率,并确定所用数据集最有效的特征组合。分析表明,区分认知负荷水平最相关的脑区是额叶区域,以及阿尔法和西塔节律子带。将RADWT与线性支持向量机(LSVM)和最小冗余最大相关性(mRMR)特征选择方法相结合,可产生显著的分类准确率。具体而言,该模型在0-back对3-back的情况下准确率为96.6%,在0-back对2-back的情况下准确率为94.9%,在2-back对3-back的情况下准确率为92.3%,在三类场景下准确率为81.7%。这些结果证实了所提出的使用基于RADWT和机器学习的方法估计认知负荷的方法的有效性。这些结果还为神经机制提供了见解,并为自适应系统、脑机接口和认知监测中的高级应用奠定了基础。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验