He Zhaoming, Bi Hai, Liang Baoyan, Li Zhiqiang, Zhang Heming, Wang Yue
Jihua Laboratory, Foshan, Guangdong Province, PR China.
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, PR China.
Light Sci Appl. 2025 Feb 10;14(1):75. doi: 10.1038/s41377-024-01713-w.
Free of noble-metal and high in unit internal quantum efficiency of electroluminescence, organic molecules with thermally activated delayed fluorescence (TADF) features pose the potential to substitute metal-based phosphorescence materials and serve as the new-generation emitters for the mass production of organic light emitting diodes (OLEDs) display. Predicting the function of TADF emitters beyond classic chemical synthesis and material characterization experiments remains a great challenge. The advances in deep learning (DL) based artificial intelligence (AI) offer an exciting opportunity for screening high-performance TADF materials through efficiency evaluation. However, data-driven material screening approaches with the capacity to access the excited state properties of TADF emitters remain extremely difficult and largely unaddressed. Inspired by the fundamental principle that the excited state properties of TADF molecules are strongly dependent on their D-A geometric and electronic structures, we developed the Electronic Structure-Infused Network (ESIN) for TADF emitter screening. Designed with capacities of accurate prediction of the photoluminescence quantum yields (PLQYs) of TADF molecules based on elemental molecular geometry and orbital information and integrated with frontier molecular orbitals (FMOs) weight-based representation and modeling features, ESIN is a promising interpretable tool for emission efficiency evaluation and molecular design of TADF emitters.
具有热激活延迟荧光(TADF)特性的有机分子不含贵金属且电致发光的单位内量子效率高,有潜力替代金属基磷光材料,并作为新一代发光体用于大规模生产有机发光二极管(OLED)显示器。预测TADF发光体的功能,超越传统化学合成和材料表征实验,仍然是一个巨大的挑战。基于深度学习(DL)的人工智能(AI)的进展为通过效率评估筛选高性能TADF材料提供了一个令人兴奋的机会。然而,能够获取TADF发光体激发态性质的数据驱动材料筛选方法仍然极其困难,而且在很大程度上尚未得到解决。受TADF分子的激发态性质强烈依赖于其给体-受体(D-A)几何结构和电子结构这一基本原理的启发,我们开发了用于TADF发光体筛选的电子结构注入网络(ESIN)。ESIN基于元素分子几何结构和轨道信息设计,具有准确预测TADF分子光致发光量子产率(PLQYs)的能力,并与基于前沿分子轨道(FMOs)权重的表示和建模特征相结合,是一种用于TADF发光体发射效率评估和分子设计的有前景的可解释工具。