Suppr超能文献

使用相位循环bSSFP的灵活且经济高效的深度学习加速多参数弛豫测量法

Flexible and cost-effective deep learning for accelerated multi-parametric relaxometry using phase-cycled bSSFP.

作者信息

Birk Florian, Mahler Lucas, Steiglechner Julius, Wang Qi, Scheffler Klaus, Heule Rahel

机构信息

Department of Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany.

High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.

出版信息

Sci Rep. 2025 Feb 9;15(1):4825. doi: 10.1038/s41598-025-88579-z.

Abstract

To accelerate the clinical adoption of quantitative magnetic resonance imaging (qMRI), frameworks are needed that not only allow for rapid acquisition, but also flexibility, cost efficiency, and high accuracy in parameter mapping. In this study, feed-forward deep neural network (DNN)- and iterative fitting-based frameworks are compared for multi-parametric (MP) relaxometry based on phase-cycled balanced steady-state free precession (pc-bSSFP) imaging. The performance of supervised DNNs (SVNN), self-supervised physics-informed DNNs (PINN), and an iterative fitting framework termed motion-insensitive rapid configuration relaxometry (MIRACLE) was evaluated in silico and in vivo in brain tissue of healthy subjects, including Monte Carlo sampling to simulate noise. DNNs were trained on three distinct in silico parameter distributions and at different signal-to-noise-ratios. The PINN framework, which incorporates physical knowledge into the training process, ensured more consistent inference and increased robustness to training data distribution compared to the SVNN. Furthermore, DNNs utilizing the full information of the underlying complex-valued MR data demonstrated ability to accelerate the data acquisition by a factor of 3. Whole-brain relaxometry using DNNs proved to be effective and adaptive, suggesting the potential for low-cost DNN retraining. This work emphasizes the advantages of in silico DNN MP-qMRI pipelines for rapid data generation and DNN training without extensive dictionary generation, long parameter inference times, or prolonged data acquisition, highlighting the flexible and rapid nature of lightweight machine learning applications for MP-qMRI.

摘要

为了加速定量磁共振成像(qMRI)在临床上的应用,需要这样的框架:它不仅要允许快速采集,还要具备灵活性、成本效益以及参数映射的高精度。在本研究中,对基于相位循环平衡稳态自由进动(pc-bSSFP)成像的多参数(MP)弛豫测量法,比较了前馈深度神经网络(DNN)和基于迭代拟合的框架。在健康受试者脑组织的计算机模拟和体内实验中,评估了监督式DNN(SVNN)、自监督物理信息DNN(PINN)以及一种称为运动不敏感快速配置弛豫测量法(MIRACLE)的迭代拟合框架的性能,包括蒙特卡罗采样以模拟噪声。DNN在三种不同的计算机模拟参数分布和不同信噪比下进行训练。与SVNN相比,将物理知识纳入训练过程的PINN框架确保了更一致的推理,并提高了对训练数据分布的鲁棒性。此外,利用底层复值MR数据的完整信息的DNN显示出能够将数据采集速度提高3倍。使用DNN进行全脑弛豫测量被证明是有效且自适应的,这表明低成本DNN再训练具有潜力。这项工作强调了计算机模拟DNN MP-qMRI管道在快速数据生成和DNN训练方面的优势,无需大量生成字典、长时间的参数推断或延长的数据采集,突出了用于MP-qMRI的轻量级机器学习应用的灵活快速特性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e91/11808094/53e220b77f20/41598_2025_88579_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验