Suppr超能文献

快速深度学习重建技术在临床前磁共振指纹成像中的应用。

Fast deep learning reconstruction techniques for preclinical magnetic resonance fingerprinting.

机构信息

Department of Mathematics, University of Pavia, Pavia, Italy.

INFN, Istituto Nazionale di Fisica Nucleare, Pavia, Italy.

出版信息

NMR Biomed. 2024 Jan;37(1):e5028. doi: 10.1002/nbm.5028. Epub 2023 Sep 5.

Abstract

We propose a deep learning (DL) model and a hyperparameter optimization strategy to reconstruct T and T maps acquired with the magnetic resonance fingerprinting (MRF) methodology. We applied two different MRF sequence routines to acquire images of ex vivo rat brain phantoms using a 7-T preclinical scanner. Subsequently, the DL model was trained using experimental data, completely excluding the use of any theoretical MRI signal simulator. The best combination of the DL parameters was implemented by an automatic hyperparameter optimization strategy, whose key aspect is to include all the parameters to the fit, allowing the simultaneous optimization of the neural network architecture, the structure of the DL model, and the supervised learning algorithm. By comparing the reconstruction performances of the DL technique with those achieved from the traditional dictionary-based method on an independent dataset, the DL approach was shown to reduce the mean percentage relative error by a factor of 3 for T and by a factor of 2 for T , and to improve the computational time by at least a factor of 37. Furthermore, the proposed DL method enables maintaining comparable reconstruction performance, even with a lower number of MRF images and a reduced k-space sampling percentage, with respect to the dictionary-based method. Our results suggest that the proposed DL methodology may offer an improvement in reconstruction accuracy, as well as speeding up MRF for preclinical, and in prospective clinical, investigations.

摘要

我们提出了一种深度学习(DL)模型和超参数优化策略,以重建使用磁共振指纹成像(MRF)方法获得的 T 和 T 映射。我们使用两种不同的 MRF 序列程序在 7-T 临床前扫描仪上对离体大鼠脑模型进行图像采集。随后,使用实验数据对 DL 模型进行了训练,完全排除了使用任何理论 MRI 信号模拟器。通过自动超参数优化策略实现了 DL 参数的最佳组合,其关键方面是将所有参数纳入拟合中,从而可以同时优化神经网络结构、DL 模型结构和监督学习算法。通过将 DL 技术的重建性能与独立数据集上基于字典的传统方法的性能进行比较,结果表明 DL 方法可将 T 的平均相对误差百分比降低 3 倍,将 T 的平均相对误差百分比降低 2 倍,并将计算时间至少提高 37 倍。此外,与基于字典的方法相比,所提出的 DL 方法即使在 MRF 图像数量较少和减少 k 空间采样百分比的情况下,也可以保持可比的重建性能。我们的研究结果表明,所提出的 DL 方法可能会提高重建准确性,并加快 MRF 在临床前和预期临床研究中的应用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验