Suppr超能文献

基于表观遗传学的随机生存森林模型在骨肉瘤预后预测和药物反应中的开发及泛癌验证

Development and pan-cancer validation of an epigenetics-based random survival forest model for prognosis prediction and drug response in OS.

作者信息

Yin Chaoyi, Chi Kede, Chen Zhiqing, Zhuang Shabin, Ye Yongsheng, Zhang Binshan, Cai Cailiang

机构信息

Department of Orthopaedics, Dongguan Hospital of Guangzhou University of Chinese Medicine, Dongguan, China.

Department One of Spine Surgery, Zhongshan Hospital of Traditional Chinese Medicine, Zhongshan, China.

出版信息

Front Pharmacol. 2025 Jan 22;16:1529525. doi: 10.3389/fphar.2025.1529525. eCollection 2025.

Abstract

BACKGROUND

Osteosarcoma (OS) exhibits significant epigenetic heterogeneity, yet its systematic characterization and clinical implications remain largely unexplored.

METHODS

We analyzed single-cell transcriptomes of five primary OS samples, identifying cell type-specific epigenetic features and their evolutionary trajectories. An epigenetics-based Random Survival Forest (RSF) model was constructed using 801 curated epigenetic factors and validated in multiple independent cohorts.

RESULTS

Our analysis revealed distinct epigenetic states in the OS microenvironment, with particular activity in OS cells and osteoclasts. The RSF model identified key predictive genes including OLFML2B, ACTB, and C1QB, and demonstrated broad applicability across multiple cancer types. Risk stratification analysis revealed distinct therapeutic response patterns, with low-risk groups showing enhanced sensitivity to traditional chemotherapy drugs while high-risk groups responded better to targeted therapies.

CONCLUSION

Our epigenetics-based model demonstrates excellent prognostic accuracy (AUC>0.997 in internal validation, 0.832-0.929 in external cohorts) and provides a practical tool for treatment stratification. These findings establish a clinically applicable framework for personalized therapy selection in OS patients.

摘要

背景

骨肉瘤(OS)表现出显著的表观遗传异质性,但其系统表征和临床意义在很大程度上仍未得到探索。

方法

我们分析了五个原发性骨肉瘤样本的单细胞转录组,确定了细胞类型特异性的表观遗传特征及其进化轨迹。使用801个经过整理的表观遗传因子构建了基于表观遗传学的随机生存森林(RSF)模型,并在多个独立队列中进行了验证。

结果

我们的分析揭示了骨肉瘤微环境中不同的表观遗传状态,在骨肉瘤细胞和破骨细胞中具有特定活性。RSF模型确定了关键预测基因,包括OLFML2B、ACTB和C1QB,并证明了其在多种癌症类型中的广泛适用性。风险分层分析揭示了不同的治疗反应模式,低风险组对传统化疗药物表现出更高的敏感性,而高风险组对靶向治疗反应更好。

结论

我们基于表观遗传学的模型显示出优异的预后准确性(内部验证中AUC>0.997,外部队列中为0.832 - 0.929),并为治疗分层提供了实用工具。这些发现为骨肉瘤患者的个性化治疗选择建立了一个临床适用的框架。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2d42/11803151/6d3830af97de/fphar-16-1529525-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验