Nepal Mahesh, Gudavalli Ganesh Sainadh, Dhakal Tara P
Center for Autonomous Solar Power (CASP), Binghamton University, Binghamton, New York 13902, United States.
Department of Electrical and Computer Engineering, Binghamton University, Binghamton, New York 13902, United States.
ACS Omega. 2025 Jan 27;10(4):3439-3448. doi: 10.1021/acsomega.4c07287. eCollection 2025 Feb 4.
Supercapacitors are gaining attention for their ability to deliver rapid energy discharge while maintaining a high energy storage capacity, effectively bridging the gap between capacitors and batteries. In this paper, we report the performance of a high-capacity, fast-charging, and reliable supercapacitor consisting of nanoflower-like manganese dioxide (MnO) decorated on CVD-grown carbon nanotube (CNT) electrodes fabricated using a simple and efficient room-temperature electrodeposition method. The binder-free, self-supporting MnO@CNT composite electrodes formed on a flexible carbon fabric demonstrated excellent electrochemical energy storage capabilities, as confirmed by cyclic voltammetry (CV) and galvanostatic charge-discharge (GCD) experiments. The MnO loading significantly affected the electrode's capacity, with the highest specific capacitance of 219 F g achieved at low mass loading (3.37 mg cm) and the highest areal capacitance of 1.5 F cm for high mass loading (15.6 mg cm). The rectangular curve observed in CV experiments at faster scan rates (5-50 mV s) and the triangular curve observed in the GCD experiment at high current densities (0.1 to 0.5 A g) demonstrate the high-rate capability of the MnO@CNT electrode. The electrode also showed outstanding stability, retaining 88% of its initial capacity after 7000 cycles. Electrochemical impedance spectroscopy (EIS) measurement and corresponding analysis of the data indicated fast charge transfer kinetics and facile ion diffusion into the MnO electrode, which is attributed to the nanoflower-like structure of MnO formed on porous carbon nanotubes, leading to excellent rate performance. With these advancements, our MnO@CNT supercapacitors have significant potential in electric vehicles, complementing batteries by enabling fast discharge for quick acceleration.
超级电容器因其能够在保持高储能容量的同时实现快速能量释放而受到关注,有效地弥合了电容器和电池之间的差距。在本文中,我们报道了一种高容量、快速充电且可靠的超级电容器的性能,该超级电容器由装饰在化学气相沉积(CVD)生长的碳纳米管(CNT)电极上的纳米花状二氧化锰(MnO)组成,采用简单高效的室温电沉积方法制备。在柔性碳织物上形成的无粘结剂、自支撑的MnO@CNT复合电极展现出优异的电化学储能能力,循环伏安法(CV)和恒电流充放电(GCD)实验证实了这一点。MnO的负载量对电极容量有显著影响,在低质量负载(3.37 mg cm)下实现了最高比电容219 F g,在高质量负载(15.6 mg cm)下实现了最高面积电容1.5 F cm。在更快扫描速率(5 - 50 mV s)的CV实验中观察到的矩形曲线以及在高电流密度(0.1至0.5 A g)的GCD实验中观察到的三角形曲线证明了MnO@CNT电极的高倍率性能。该电极还表现出出色的稳定性,在7000次循环后仍保留其初始容量的88%。电化学阻抗谱(EIS)测量及相应数据分析表明电荷转移动力学快且离子易于扩散到MnO电极中,这归因于在多孔碳纳米管上形成的纳米花状MnO结构,从而带来优异的倍率性能。随着这些进展,我们的MnO@CNT超级电容器在电动汽车中具有巨大潜力,通过实现快速放电以实现快速加速来补充电池。