Shaheen Shah Syed, Oladepo Sulayman, Ali Ehsan Muhammad, Iali Wissam, Alenaizan Asem, Nahid Siddiqui Mohammad, Oyama Munetaka, Al-Betar Abdul-Rahman, Aziz Md Abdul
Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8520, Japan.
Chemistry Department, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia.
Chem Rec. 2024 Jan;24(1):e202300105. doi: 10.1002/tcr.202300105. Epub 2023 May 24.
Polyaniline (PANI) has piqued the interest of nanotechnology researchers due to its potential as an electrode material for supercapacitors. Despite its ease of synthesis and ability to be doped with a wide range of materials, PANI's poor mechanical properties have limited its use in practical applications. To address this issue, researchers investigated using PANI composites with materials with highly specific surface areas, active sites, porous architectures, and high conductivity. The resulting composite materials have improved energy storage performance, making them promising electrode materials for supercapacitors. Here, we provide an overview of recent developments in PANI-based supercapacitors, focusing on using electrochemically active carbon and redox-active materials as composites. We discuss challenges and opportunities of synthesizing PANI-based composites for supercapacitor applications. Furthermore, we provide theoretical insights into the electrical properties of PANI composites and their potential as active electrode materials. The need for this review stems from the growing interest in PANI-based composites to improve supercapacitor performance. By examining recent progress in this field, we provide a comprehensive overview of the current state-of-the-art and potential of PANI-based composites for supercapacitor applications. This review adds value by highlighting challenges and opportunities associated with synthesizing and utilizing PANI-based composites, thereby guiding future research directions.
聚苯胺(PANI)因其作为超级电容器电极材料的潜力而引起了纳米技术研究人员的兴趣。尽管聚苯胺易于合成且能够被多种材料掺杂,但其较差的机械性能限制了它在实际应用中的使用。为了解决这个问题,研究人员研究了将聚苯胺与具有高比表面积、活性位点、多孔结构和高导电性的材料制成复合材料。由此产生的复合材料具有改善的储能性能,使其成为超级电容器有前景的电极材料。在此,我们概述了基于聚苯胺的超级电容器的最新进展,重点关注使用电化学活性碳和氧化还原活性材料作为复合材料。我们讨论了合成用于超级电容器应用的聚苯胺基复合材料的挑战和机遇。此外,我们提供了关于聚苯胺复合材料电学性质及其作为活性电极材料潜力的理论见解。撰写这篇综述的必要性源于对基于聚苯胺的复合材料以改善超级电容器性能的兴趣日益增长。通过审视该领域的最新进展,我们全面概述了基于聚苯胺的复合材料在超级电容器应用方面的当前技术水平和潜力。这篇综述通过突出与合成和利用聚苯胺基复合材料相关的挑战和机遇增加了价值,从而指导未来的研究方向。