Klapproth Alexander P, Schuemann Jan, Stangl Stefan, Xie Tianwu, Li Wei Bo, Multhoff Gabriele
Center for Translational Cancer Research Technische Universität München (TranslaTUM), Klinikum rechts der Isar, München, Germany.
Institute of Radiation Medicine, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany.
Cancer Nanotechnol. 2021;12. doi: 10.1186/s12645-021-00099-3. Epub 2021 Oct 24.
Gold nanoparticles (AuNPs) are considered as promising agents to increase the radiosensitivity of tumor cells. However, the biological mechanisms of radiation enhancement effects of AuNPs are still not well understood. We present a multi-scale Monte Carlo simulation framework within TOPAS-nBio to investigate the increase of DNA damage due to the presence of AuNPs in mouse tumor models.
A tumor was placed inside a voxel mouse model and irradiated with either 100 kVp or 200 kVp x-ray beams. Phase spaces were employed to transfer particles from the macroscopic (voxel) scale to the microscopic scale, which consists of a cell geometry including a detailed mouse DNA model. Radiosensitizing effects were calculated in the presence and absence of hybrid nanoparticles with a Fe2O3 core surrounded by a gold layer (AuFeNPs). To simulate DNA damage even for very small energy tracks, Geant4-DNA physics and chemistry models were used on microscopic scale.
An AuFeNP induced enhancement of both dose and DNA strand breaks has been established for different scenarios. Produced chemical radicals including hydroxyl molecules, which were assumed to be responsible for DNA damage through chemical reactions, were found to be significantly increased. We further observed a dependency of the results on the location of the cells within the tumor for 200 kVp x-ray beams.
Our multi-scale approach allows to study irradiation induced physical and chemical effects on cells. We showed a potential increase in cell radiosensitization caused by relatively small concentrations of AuFeNPs. Our new methodology allows the individual adjustment of parameters in each simulation step and therefore can be used for other studies investigating the radiosensitizing effects of AuFeNPs or AuNPs in living cells.
金纳米颗粒(AuNPs)被认为是提高肿瘤细胞放射敏感性的有前景的制剂。然而,AuNPs辐射增强效应的生物学机制仍未得到很好的理解。我们在TOPAS-nBio中提出了一个多尺度蒙特卡罗模拟框架,以研究在小鼠肿瘤模型中由于AuNPs的存在而导致的DNA损伤增加情况。
将肿瘤置于体素小鼠模型中,并用100 kVp或200 kVp的X射线束进行照射。相空间用于将粒子从宏观(体素)尺度转移到微观尺度,微观尺度由包括详细小鼠DNA模型的细胞几何结构组成。在存在和不存在具有被金层包围的Fe2O3核心的混合纳米颗粒(AuFeNPs)的情况下计算放射增敏效应。为了即使对于非常小的能量轨迹也能模拟DNA损伤,在微观尺度上使用了Geant4-DNA物理和化学模型。
已确定在不同情况下AuFeNP会导致剂量和DNA链断裂的增强。发现产生的包括羟基分子在内的化学自由基显著增加,这些自由基被认为通过化学反应导致DNA损伤。我们进一步观察到,对于200 kVp的X射线束,结果取决于肿瘤内细胞的位置。
我们的多尺度方法允许研究辐射对细胞诱导的物理和化学效应。我们表明,相对低浓度的AuFeNPs会使细胞放射增敏有潜在增加。我们的新方法允许在每个模拟步骤中单独调整参数,因此可用于其他研究,以调查AuFeNPs或AuNPs在活细胞中的放射增敏效应。