Suppr超能文献

解读人类大脑中观察到的动作的物理学原理。

Decoding the physics of observed actions in the human brain.

作者信息

Wurm Moritz F, Erigüç Doruk Yiğit

机构信息

CIMeC - Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy.

Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.

出版信息

Elife. 2025 Feb 10;13:RP98521. doi: 10.7554/eLife.98521.

Abstract

Recognizing goal-directed actions is a computationally challenging task, requiring not only the visual analysis of body movements, but also analysis of how these movements causally impact, and thereby induce a change in, those objects targeted by an action. We tested the hypothesis that the analysis of body movements and the effects they induce relies on distinct neural representations in superior and anterior inferior parietal lobe (SPL and aIPL). In four fMRI sessions, participants observed videos of actions (e.g. breaking stick, squashing plastic bottle) along with corresponding point-light-display (PLD) stick figures, pantomimes, and abstract animations of agent-object interactions (e.g. dividing or compressing a circle). Cross-decoding between actions and animations revealed that aIPL encodes abstract representations of action effect structures independent of motion and object identity. By contrast, cross-decoding between actions and PLDs revealed that SPL is disproportionally tuned to body movements independent of visible interactions with objects. Lateral occipitotemporal cortex (LOTC) was sensitive to both action effects and body movements. These results demonstrate that parietal cortex and LOTC are tuned to physical action features, such as how body parts move in space relative to each other and how body parts interact with objects to induce a change (e.g. in position or shape/configuration). The high level of abstraction revealed by cross-decoding suggests a general neural code supporting mechanical reasoning about how entities interact with, and have effects on, each other.

摘要

识别目标导向的动作是一项计算上具有挑战性的任务,不仅需要对身体动作进行视觉分析,还需要分析这些动作如何因果性地影响并进而引起动作所针对的物体的变化。我们测试了这样一种假设,即对身体动作及其引发的效果的分析依赖于顶叶上部和颞顶叶下部前侧(SPL和aIPL)中不同的神经表征。在四个功能磁共振成像实验环节中,参与者观看了动作视频(例如折断棍子、挤压塑料瓶)以及相应的点光显示(PLD)简笔画、手势和主体与物体交互的抽象动画(例如分割或压缩一个圆圈)。动作与动画之间的交叉解码显示,aIPL编码动作效果结构的抽象表征,而与动作和物体身份无关。相比之下,动作与PLD之间的交叉解码显示,SPL对身体动作的调谐不成比例,与物体的可见交互无关。枕颞外侧皮层(LOTC)对动作效果和身体动作均敏感。这些结果表明,顶叶皮层和LOTC对物理动作特征进行了调谐,例如身体部位如何在空间中相对彼此移动,以及身体部位如何与物体相互作用以引起变化(例如位置或形状/构型的变化)。交叉解码所揭示的高度抽象水平表明存在一种通用的神经编码,支持关于实体如何相互作用并对彼此产生影响的机械推理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc49/11810105/70bd9aaaba29/elife-98521-fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验