Liamsuwan T, Uehara S, Nikjoo H
Thailand Institute of Nuclear Technology, Ongkharak, Nakorn Nayok 26120, Thailand
School of Health Science, Kyushu University, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
Radiat Prot Dosimetry. 2015 Sep;166(1-4):29-33. doi: 10.1093/rpd/ncv204. Epub 2015 Apr 22.
The article investigates two approaches in microdosimetric calculations based on Monte Carlo track structure (MCTS) simulations of a 160-MeV proton beam. In the first approach, microdosimetric parameters of the proton beam were obtained using the weighted sum of proton energy distributions and microdosimetric parameters of proton track segments (TSMs). In the second approach, phase spaces of energy depositions obtained using MCTS simulations in the full slowing down (FSD) mode were used for the microdosimetric calculations. Targets of interest were water cylinders of 2.3-100 nm in diameters and heights. Frequency-averaged lineal energies ([Formula: see text]) obtained using both approaches agreed within the statistical uncertainties. Discrepancies beyond this level were observed for dose-averaged lineal energies ([Formula: see text]) towards the Bragg peak region due to the small number of proton energies used in the TSM approach and different energy deposition patterns in the TSM and FSD of protons.
本文基于160 MeV质子束的蒙特卡罗径迹结构(MCTS)模拟,研究了微剂量学计算中的两种方法。在第一种方法中,质子束的微剂量学参数是通过质子能量分布与质子径迹段(TSM)微剂量学参数的加权和来获得的。在第二种方法中,使用全慢化(FSD)模式下MCTS模拟得到的能量沉积相空间进行微剂量学计算。感兴趣的靶是直径和高度为2.3 - 100 nm的水圆柱体。使用两种方法获得的频率平均线能量([公式:见原文])在统计不确定度范围内一致。由于TSM方法中使用的质子能量数量较少以及质子在TSM和FSD中的能量沉积模式不同,在布拉格峰区域观察到剂量平均线能量([公式:见原文])超出该水平的差异。