Zhao Chunyan, Lai Xilin, Liu Dawei, Guo Xinrui, Tian Jiamin, Dong Zuoyuan, Luo Shaochuan, Zhou Dongshan, Jiang Lang, Huang Ru, He Ming
Beijing Advanced Innovation Center for Integrated Circuits, School of Integrated Circuits, Peking University, Beijing, China.
Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
Nat Commun. 2025 Feb 10;16(1):1509. doi: 10.1038/s41467-025-56757-2.
Precise control over crystallinity and morphology of conjugated polymers (CPs) is essential for progressing organic electronics. However, manufacturing single-crystal thin films of CPs presents substantial challenges due to their complex molecular structures, distorted chain conformations, and unbalanced crystallization kinetics. In this work, we demonstrate a universal nanoconfined molecular-dipole orientating strategy to craft high-quality single-crystal thin films for a variety of CPs, spanning from traditional thiophene- and theinothiophene-based homopolymers to diketopyrrolopyrrole- (i.e., p-type) and naphthalene-based (i.e., n-type) donor-acceptor copolymers. Central to this strategy is the synergetic manipulations of molecular dipoles, π-π stackings, and alkyl-alkyl interactions of CPs within our rationally-designed spatial-electrostatic confinement capacitor, which facilitates the rotation of conjugated backbones and the alignment of π-π stackings into microscale-sized single-crystal thin films. A minimal energetic disorder of 25 meV that below the thermal fluctuation energy kT at room temperature, as well as an excellent transistor mobility of 15.5 cmVs are achieved, marking a significant step towards controllable growths of conjugated-polymer single-crystal thin films that hold a cornerstone for high-performance organic electronic devices.
对共轭聚合物(CPs)的结晶度和形态进行精确控制对于推动有机电子学发展至关重要。然而,由于CPs复杂的分子结构、扭曲的链构象以及不平衡的结晶动力学,制造CPs的单晶薄膜面临着巨大挑战。在这项工作中,我们展示了一种通用的纳米受限分子偶极取向策略,用于制备各种CPs的高质量单晶薄膜,涵盖从传统的基于噻吩和噻吩并噻吩的均聚物到基于二酮吡咯并吡咯(即p型)和萘(即n型)的供体-受体共聚物。该策略的核心是在我们合理设计的空间静电限制电容器内对CPs的分子偶极、π-π堆积和烷基-烷基相互作用进行协同操纵,这有助于共轭主链的旋转以及π-π堆积排列成微米级大小的单晶薄膜。实现了在室温下低于热涨落能量kT的25 meV的最小能量无序,以及15.5 cm²V⁻¹s⁻¹的优异晶体管迁移率,这标志着朝着共轭聚合物单晶薄膜的可控生长迈出了重要一步,而共轭聚合物单晶薄膜是高性能有机电子器件的基石。