Suppr超能文献

用于差异染色质环检测与可视化的Bioconductor/R工作流程。

A Bioconductor/R Workflow for the Detection and Visualization of Differential Chromatin Loops.

作者信息

Flores J P, Davis Eric, Kramer Nicole, Love Michael I, Phanstiel Douglas H

机构信息

Curriculum in Bioinformatics & Computational Biology, Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, USA.

Thurston Arthritis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, USA.

出版信息

F1000Res. 2024 Nov 11;13:1346. doi: 10.12688/f1000research.153949.1. eCollection 2024.

Abstract

BACKGROUND

Chromatin loops play a critical role in gene regulation by connecting regulatory loci and gene promoters. The identification of changes in chromatin looping between cell types or biological conditions is an important task for understanding gene regulation; however, the manipulation, statistical analysis, and visualization of data sets describing 3D chromatin structure is challenging due to the large and complex nature of the relevant data sets.

METHODS

Here, we describe a workflow for identifying and visualizing differential chromatin loops from Hi-C data from two biological conditions using the 'mariner', 'DESeq2' and 'plotgardener' Bioconductor/R packages. The workflow assumes that Hi-C data has been processed into '.hic' or '.cool' files and that loops have been identified using an existing loop-calling algorithm.

RESULTS

First, the 'mariner' package is used to merge redundant loop calls and extract interaction frequency counts. Next, 'DESeq2' is used to identify loops that exhibit differential contact frequencies between conditions. Finally, 'plotgardener' is used to visualize differential loops.

CONCLUSION

Chromatin interaction data is an important modality for understanding the mechanisms of transcriptional regulation. The workflow presented here outlines the use of 'mariner' as a tool to manipulate, extract, and aggregate chromatin interaction data, 'DESeq2' to perform differential analysis of these data across conditions, samples, and replicates, and 'plotgardener' to explore and visualize the results.

摘要

背景

染色质环通过连接调控位点和基因启动子在基因调控中发挥关键作用。识别细胞类型或生物学条件之间染色质环化的变化是理解基因调控的一项重要任务;然而,由于相关数据集庞大且复杂,描述三维染色质结构的数据集的操作、统计分析和可视化具有挑战性。

方法

在这里,我们描述了一种工作流程,用于使用“mariner”、“DESeq2”和“plotgardener”Bioconductor/R包从来自两种生物学条件的Hi-C数据中识别和可视化差异染色质环。该工作流程假设Hi-C数据已被处理为“hic”或“cool”文件,并且已使用现有的环调用算法识别出环。

结果

首先,使用“mariner”包合并冗余环调用并提取相互作用频率计数。接下来,使用“DESeq2”识别在不同条件下表现出差异接触频率的环。最后,使用“plotgardener”可视化差异环。

结论

染色质相互作用数据是理解转录调控机制的重要方式。这里介绍的工作流程概述了使用“mariner”作为操作、提取和汇总染色质相互作用数据的工具,使用“DESeq2”对这些数据在不同条件、样本和重复中进行差异分析,以及使用“plotgardener”探索和可视化结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/554f/11809633/dba5de86dfd8/f1000research-13-168915-g0000.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验