Suppr超能文献

水手:探索 Hi-Cs。

Mariner: explore the Hi-Cs.

机构信息

Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States.

Thurston Arthritis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States.

出版信息

Bioinformatics. 2024 Jun 3;40(6). doi: 10.1093/bioinformatics/btae352.

Abstract

MOTIVATION

3D chromatin structure plays an important role in regulating gene expression and alterations to this structure can result in developmental abnormalities and disease. While genomic approaches like Hi-C and Micro-C can provide valuable insights in 3D chromatin architecture, the resulting datasets are extremely large and difficult to manipulate.

RESULTS

Here, we present mariner, a rapid and memory efficient tool to extract, aggregate, and plot data from Hi-C matrices within the R/Bioconductor environment. Mariner simplifies the process of querying and extracting contacts from multiple Hi-C files using a parallel and block-processing approach. Modular functions allow complete workflow customization for advanced users, yet all-in-one functions are available for running the most common types of analyses. Finally, tight integration with existing Bioconductor infrastructure enables complete analysis and visualization of Hi-C data in R.

AVAILABILITY AND IMPLEMENTATION

Available on GitHub at https://github.com/EricSDavis/mariner and on Bioconductor at https://www.bioconductor.org/packages/release/bioc/html/mariner.html.

摘要

动机

三维染色质结构在调节基因表达中起着重要作用,这种结构的改变可能导致发育异常和疾病。虽然 Hi-C 和 Micro-C 等基因组方法可以提供有关三维染色质结构的有价值的见解,但产生的数据集非常庞大且难以处理。

结果

在这里,我们展示了 mariner,这是一种在 R/Bioconductor 环境中从 Hi-C 矩阵中提取、聚合和绘制数据的快速且内存高效的工具。Mariner 通过使用并行和块处理方法简化了从多个 Hi-C 文件查询和提取接触的过程。模块化功能允许高级用户完全自定义工作流程,但也提供了用于运行最常见类型分析的一体式功能。最后,与现有 Bioconductor 基础设施的紧密集成可在 R 中实现 Hi-C 数据的完整分析和可视化。

可用性和实现

可在 GitHub 上的 https://github.com/EricSDavis/mariner 和 Bioconductor 上的 https://www.bioconductor.org/packages/release/bioc/html/mariner.html 获得。

相似文献

1
Mariner: explore the Hi-Cs.
Bioinformatics. 2024 Jun 3;40(6). doi: 10.1093/bioinformatics/btae352.
2
CWL-Based Analysis Pipeline for Hi-C Data: From FASTQ Files to Matrices.
Methods Mol Biol. 2025;2856:79-117. doi: 10.1007/978-1-0716-4136-1_6.
3
HiCcompare: an R-package for joint normalization and comparison of HI-C datasets.
BMC Bioinformatics. 2018 Jul 31;19(1):279. doi: 10.1186/s12859-018-2288-x.
5
ReactomeGSA: new features to simplify public data reuse.
Bioinformatics. 2024 Jun 3;40(6). doi: 10.1093/bioinformatics/btae338.
6
RepViz: a replicate-driven R tool for visualizing genomic regions.
BMC Res Notes. 2019 Jul 19;12(1):441. doi: 10.1186/s13104-019-4473-z.
7
Sushi.R: flexible, quantitative and integrative genomic visualizations for publication-quality multi-panel figures.
Bioinformatics. 2014 Oct;30(19):2808-10. doi: 10.1093/bioinformatics/btu379. Epub 2014 Jun 5.
8
Enhancing Hi-C contact matrices for loop detection with Capricorn: a multiview diffusion model.
Bioinformatics. 2024 Jun 28;40(Suppl 1):i471-i480. doi: 10.1093/bioinformatics/btae211.
9
GDCRNATools: an R/Bioconductor package for integrative analysis of lncRNA, miRNA and mRNA data in GDC.
Bioinformatics. 2018 Jul 15;34(14):2515-2517. doi: 10.1093/bioinformatics/bty124.
10
UMI4Cats: an R package to analyze chromatin contact profiles obtained by UMI-4C.
Bioinformatics. 2021 Nov 18;37(22):4240-4242. doi: 10.1093/bioinformatics/btab392.

引用本文的文献

1
Genome reorganization and its functional impact during breast cancer progression.
bioRxiv. 2025 May 17:2025.05.14.654144. doi: 10.1101/2025.05.14.654144.
2
A Bioconductor/R Workflow for the Detection and Visualization of Differential Chromatin Loops.
F1000Res. 2024 Nov 11;13:1346. doi: 10.12688/f1000research.153949.1. eCollection 2024.
6
Guiding the design of well-powered Hi-C experiments to detect differential loops.
bioRxiv. 2023 Mar 16:2023.03.15.532762. doi: 10.1101/2023.03.15.532762.

本文引用的文献

1
Cooltools: Enabling high-resolution Hi-C analysis in Python.
PLoS Comput Biol. 2024 May 6;20(5):e1012067. doi: 10.1371/journal.pcbi.1012067. eCollection 2024 May.
2
HiCmapTools: a tool to access HiC contact maps.
BMC Bioinformatics. 2022 Feb 10;23(1):64. doi: 10.1186/s12859-022-04589-y.
3
Plotgardener: cultivating precise multi-panel figures in R.
Bioinformatics. 2022 Mar 28;38(7):2042-2045. doi: 10.1093/bioinformatics/btac057.
4
HiC-DC+ enables systematic 3D interaction calls and differential analysis for Hi-C and HiChIP.
Nat Commun. 2021 Jun 7;12(1):3366. doi: 10.1038/s41467-021-23749-x.
5
Coolpup.py: versatile pile-up analysis of Hi-C data.
Bioinformatics. 2020 May 1;36(10):2980-2985. doi: 10.1093/bioinformatics/btaa073.
6
Juicer Provides a One-Click System for Analyzing Loop-Resolution Hi-C Experiments.
Cell Syst. 2016 Jul;3(1):95-8. doi: 10.1016/j.cels.2016.07.002.
7
Infrastructure for genomic interactions: Bioconductor classes for Hi-C, ChIA-PET and related experiments.
F1000Res. 2016 May 20;5:950. doi: 10.12688/f1000research.8759.2. eCollection 2016.
8
HiC-Pro: an optimized and flexible pipeline for Hi-C data processing.
Genome Biol. 2015 Dec 1;16:259. doi: 10.1186/s13059-015-0831-x.
9
Bioconductor: open software development for computational biology and bioinformatics.
Genome Biol. 2004;5(10):R80. doi: 10.1186/gb-2004-5-10-r80. Epub 2004 Sep 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验