Suppr超能文献

金属二聚体掺杂的六方氮化硼结构作为具有增强灵敏度特性的新型有毒气体传感器:一项密度泛函理论研究

Metal Dimers-Doped h-BN Structures as Novel Toxic Gases Sensors With Enhanced Sensitivity Properties: An ADFT Study.

作者信息

Cruz-Martínez H, Rojas-Chávez H, Santiago-Silva L, López-Sosa L, Calaminici P

机构信息

Tecnológico Nacional de México, Instituto Tecnológico del Valle de Etla, Oaxaca, Mexico.

Tecnológico Nacional de México, Instituto Tecnológico de Tláhuac II, Mexico City, Mexico.

出版信息

J Comput Chem. 2025 Feb 15;46(5):e70062. doi: 10.1002/jcc.70062.

Abstract

Toxic gases monitoring and detection are fundamental to lessening public health problems. Therefore, in this work, to explore emergent sensor materials, 3d-metal dimers-doped hexagonal boron nitride (h-BN) structures were investigated employing auxiliary density functional theory (ADFT) as novel CO and NO gas sensors. Firstly, the stabilities of Co, Ni, and Cu dimers deposited on defective h-BN were determined. Then, sensitivities of 3d-metal dimers-doped h-BN structures towards the NO and CO gases were investigated. It was found that the interaction energies of these 3d-metal dimers embedded on defective h-BN are higher than those deposited on pristine h-BN structure, which indicates that the 3d-metal dimers exhibit good stability on defective h-BN. Moreover, this work demonstrated that the CO and NO adsorption energies on 3d-metal dimers-doped h-BN structures are higher than those computed in the literature for pristine h-BN structure. Consequently, the here considered 3d-metal dimers-doped h-BN structures can be good candidates for toxic CO and NO gas detection.

摘要

有毒气体监测与检测对于减轻公共卫生问题至关重要。因此,在本研究中,为探索新型传感器材料,采用辅助密度泛函理论(ADFT)研究了3d金属二聚体掺杂六方氮化硼(h-BN)结构作为新型CO和NO气体传感器。首先,确定了沉积在缺陷h-BN上的Co、Ni和Cu二聚体的稳定性。然后,研究了3d金属二聚体掺杂h-BN结构对NO和CO气体的灵敏度。研究发现,嵌入缺陷h-BN的这些3d金属二聚体的相互作用能高于沉积在原始h-BN结构上的相互作用能,这表明3d金属二聚体在缺陷h-BN上表现出良好的稳定性。此外,本研究表明,3d金属二聚体掺杂h-BN结构上的CO和NO吸附能高于文献中报道的原始h-BN结构的吸附能。因此,本文所考虑的3d金属二聚体掺杂h-BN结构有望成为检测有毒CO和NO气体的良好候选材料。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7279/11827289/85eb1c0b484d/JCC-46-0-g006.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验