Padilla-Godínez Francisco J, López-Goerne Tessy, Calvillo-Muñoz Evelyn Y, Álvarez-Lemus Mayra Angélica, Navarrete-Bolaños Juan, Collazo-Navarrete Omar, Lora-Marín Obed R, Cárdenas-Aguayo María-Del-Carmen, Velasco Myrian, Guerra-Crespo Magdalena
Regenerative Medicine Laboratory, Department of Physiology, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico.
Laboratory of Nanotechnology and Nanomedicine, Department of Health Care, Metropolitan Autonomous University, Mexico City, Mexico.
Nanomedicine (Lond). 2025 Mar;20(6):543-557. doi: 10.1080/17435889.2025.2460228. Epub 2025 Feb 12.
Parkinson's disease (PD) is a neurodegenerative disorder caused by the progressive degeneration of dopaminergic neurons in the substantia nigra pars compacta, leading to impaired dopamine (DA) signaling and motor control. Intermittent dosing of current DA precursors results in side effects, prompting research into controlled drug release mechanisms for sustained and targeted delivery of DA.
MATERIALS & METHODS: In this work, we stabilized DA within a nanostructured silicate matrix (nanoreservoir) using the sol-gel method. We examined the physicochemical properties, kinetics of drug release, and biocompatibility in dopaminergic neurons and fibroblasts.
The optimized synthesis method allowed for the stabilization of DA by preventing its oxidation. The physicochemical and controlled release analysis showed a direct relationship between the mesoporous structure, interaction of the DA with the matrix, and the release kinetics followed, proving the possibility to modify the rate of release by adjusting the synthesis parameters. Furthermore, the nanoreservoirs were biocompatible with dopaminergic neurons and fibroblasts
The research sets the stage for potential evaluations and new strategies for managing PD, offering hope for improved treatments based on DA and not derivatives.
帕金森病(PD)是一种神经退行性疾病,由黑质致密部多巴胺能神经元的进行性退化引起,导致多巴胺(DA)信号传导和运动控制受损。目前的DA前体间歇性给药会产生副作用,这促使人们研究可控药物释放机制,以实现DA的持续和靶向递送。
在这项工作中,我们使用溶胶 - 凝胶法将DA稳定在纳米结构的硅酸盐基质(纳米储库)中。我们研究了其物理化学性质、药物释放动力学以及在多巴胺能神经元和成纤维细胞中的生物相容性。
优化的合成方法通过防止DA氧化使其得以稳定。物理化学和控释分析表明,介孔结构、DA与基质的相互作用以及随后的释放动力学之间存在直接关系,这证明了通过调整合成参数来改变释放速率的可能性。此外,纳米储库与多巴胺能神经元和成纤维细胞具有生物相容性。
该研究为帕金森病的潜在评估和新治疗策略奠定了基础,为基于DA而非其衍生物的改进治疗带来了希望。