Suppr超能文献

应用生态数据分析最佳实践的指导框架:从构建Galaxy-Ecology中获得的经验教训。

Guidance framework to apply best practices in ecological data analysis: lessons learned from building Galaxy-Ecology.

作者信息

Royaux Coline, Mihoub Jean-Baptiste, Jossé Marie, Pelletier Dominique, Norvez Olivier, Reecht Yves, Fouilloux Anne, Rasche Helena, Hiltemann Saskia, Batut Bérénice, Marc Eléaume, Seguineau Pauline, Massé Guillaume, Amossé Alan, Bissery Claire, Lorrilliere Romain, Martin Alexis, Bas Yves, Virgoulay Thimothée, Chambon Valentin, Arnaud Elie, Michon Elisa, Urfer Clara, Trigodet Eloïse, Delannoy Marie, Loïs Gregoire, Julliard Romain, Grüning Björn, Le Bras Yvan

机构信息

UMR8067 Biologie des Organismes et Ecosystèmes Aquatiques (BOREA, MNHN-CNRS-SU-IRD-UCN-UA), Sorbonne Université, Station Marine de Concarneau, 29900 Concarneau, France.

Pôle national de données de biodiversité, UAR2006 PatriNat (OFB-MNHN-CNRS-IRD), Muséum National d'Histoire Naturelle, Station Marine de Concarneau, 29900 Concarneau, France.

出版信息

Gigascience. 2025 Jan 6;14. doi: 10.1093/gigascience/giae122.

Abstract

Numerous conceptual frameworks exist for best practices in research data and analysis (e.g., Open Science and FAIR principles). In practice, there is a need for further progress to improve transparency, reproducibility, and confidence in ecology. Here, we propose a practical and operational framework for researchers and experts in ecology to achieve best practices for building analytical procedures from individual research projects to production-level analytical pipelines. We introduce the concept of atomization to identify analytical steps that support generalization by allowing us to go beyond single analyses. The term atomization is employed to convey the idea of single analytical steps as "atoms" composing an analytical procedure. When generalized, "atoms" can be used in more than a single case analysis. These guidelines were established during the development of the Galaxy-Ecology initiative, a web platform dedicated to data analysis in ecology. Galaxy-Ecology allows us to demonstrate a way to reach higher levels of reproducibility in ecological sciences by increasing the accessibility and reusability of analytical workflows once atomized and generalized.

摘要

关于研究数据与分析的最佳实践,存在众多概念框架(例如,开放科学和FAIR原则)。在实践中,仍需进一步努力,以提高生态学研究的透明度、可重复性及可信度。在此,我们为生态学领域的研究人员和专家提出了一个实用且可操作的框架,以实现从单个研究项目到生产级分析流程的最佳分析流程构建实践。我们引入了“原子化”概念,通过超越单一分析来确定支持泛化的分析步骤。术语“原子化”用于将单个分析步骤的概念表述为构成分析过程的“原子”。当进行泛化时,“原子”可用于多个案例分析。这些指南是在Galaxy-Ecology计划的开发过程中制定的,Galaxy-Ecology是一个致力于生态学数据分析的网络平台。Galaxy-Ecology使我们能够展示一种方法,通过提高原子化和泛化后分析工作流程的可及性和可重用性,在生态科学中实现更高水平的可重复性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef19/11816794/bc1e72db8f93/giae122fig1g.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验