Zech Michael, Dzinovic Ivana, Skorvanek Matej, Harrer Philip, Necpal Jan, Kopajtich Robert, Kittke Volker, Tilch Erik, Zhao Chen, Tsoma Eugenia, Sorrentino Ugo, Indelicato Elisabetta, Stehr Antonia, Saparov Alice, Abela Lucia, Adamovicova Miriam, Afenjar Alexandra, Assmann Birgit, Baloghova Janette, Baumann Matthias, Berutti Riccardo, Brezna Zuzana, Brugger Melanie, Brunet Theresa, Cogne Benjamin, Colangelo Isabel, Conboy Erin, Distelmaier Felix, Eckenweiler Matthias, Garavaglia Barbara, Geerlof Arie, Graf Elisabeth, Hackenberg Annette, Harvanova Denisa, Haslinger Bernhard, Havrankova Petra, Hoffmann Georg F, Janzarik Wibke G, Keren Boris, Kolnikova Miriam, Kolokotronis Konstantinos, Kosutzka Zuzana, Koy Anne, Krenn Martin, Krygier Magdalena, Kusikova Katarina, Maier Oliver, Meitinger Thomas, Mertes Christian, Milenkovic Ivan, Monfrini Edoardo, Mourao Andre Santos Dias, Musacchio Thomas, Nizon Mathilde, Ostrozovicova Miriam, Pavlov Martin, Prihodova Iva, Rektorova Irena, Romito Luigi M, Rybanska Barbora, Sadr-Nabavi Ariane, Schwenger Susanne, Shoeibi Ali, Sitzberger Alexandra, Smirnov Dmitrii, Svantnerova Jana, Tautanova Raushana, Toelle Sandra P, Ulmanova Olga, Vetrini Francesco, Vill Katharina, Wagner Matias, Weise David, Zorzi Giovanna, Di Fonzo Alessio, Oexle Konrad, Berweck Steffen, Mall Volker, Boesch Sylvia, Schormair Barbara, Prokisch Holger, Jech Robert, Winkelmann Juliane
Institute of Human Genetics, School of Medicine and Health, Technical University of Munich, 81675 Munich, Germany.
Institute of Neurogenomics, Helmholtz Zentrum München, 85764 Munich, Germany.
Brain. 2025 Feb 12. doi: 10.1093/brain/awaf059.
Dystonia is a rare-disease trait for which large-scale genomic investigations are still underrepresented. Genetic heterogeneity among patients with unexplained dystonia warrants interrogation of entire genome sequences, but this has not yet been systematically evaluated. To significantly enhance our understanding of the genetic contribution to dystonia, we (re)analyzed 2,874 whole-exome sequencing (WES), 564 whole-genome sequencing (WGS), as well as 80 fibroblast-derived proteomics datasets, representing the output of high-throughput analyses in 1,990 patients and 973 unaffected relatives from 1,877 families. Recruitment and precision-phenotyping procedures were driven by long-term collaborations of international experts with access to overlooked populations. By exploring WES data, we found that continuous scaling of sample sizes resulted in steady gains in the number of associated disease genes without plateauing. On average, every second diagnosis involved a gene not previously implicated in our cohort. Second-line WGS focused on a subcohort of undiagnosed individuals with high likelihood of having monogenic forms of dystonia, comprising large proportions of patients with early onset (81.3%), generalized symptom distribution (50.8%) and/or coexisting features (68.9%). We undertook extensive searches for variants in nuclear and mitochondrial genomes to uncover 38 (ultra)rare diagnostic-grade findings in 37 of 305 index patients (12.1%), many of which had remained undetected due to methodological inferiority of WES or pipeline limitations. WGS-identified elusive variations included alterations in exons poorly covered by WES, RNA-gene variants, mitochondrial-DNA mutations, small copy-number variants, complex rearranged genome structure, and short tandem repeats. For improved variant interpretation in WGS-inconclusive cases, we employed systematic integration of quantitative proteomics. This aided in verifying diagnoses related to technically challenging variants and in upgrading a variant of uncertain significance (3 of 70 WGS-inconclusive index patients, 4.3%). Further, unsupervised proteomic outlier-analysis supplemented with transcriptome sequencing revealed pathological gene underexpression induced by transcript disruptions in three more index patients with underlying (deep) intronic variants (3/70, 4.3%), highlighting the potential for targeted antisense-oligonucleotide therapy development. Finally, trio-WGS prioritized a de-novo missense change in the candidate PRMT1, encoding a histone-methyltransferase. Data-sharing strategies supported the discovery of three distinct PRMT1 de-novo variants in four phenotypically similar patients, associated with loss-of-function effects in in-vitro assays. This work underscores the importance of continually expanding sequencing cohorts to characterize the extensive spectrum of gene aberrations in dystonia. We show that a pool of unresolved cases is amenable to WGS and complementary multi-omic studies, directing advanced etiopathological concepts and future diagnostic-practice workflows for dystonia.
肌张力障碍是一种罕见病特征,针对其大规模基因组研究的代表性仍不足。不明原因肌张力障碍患者之间的遗传异质性需要对全基因组序列进行研究,但尚未对此进行系统评估。为了显著增进我们对肌张力障碍遗传因素的理解,我们重新分析了2874个全外显子组测序(WES)、564个全基因组测序(WGS)以及80个成纤维细胞衍生蛋白质组学数据集,这些数据集代表了对来自1877个家庭的1990例患者和973名未受影响亲属进行的高通量分析结果。招募和精准表型分析程序由国际专家的长期合作推动,这些专家能够接触到被忽视的人群。通过探索WES数据,我们发现样本量的持续扩大导致相关疾病基因数量稳步增加,且没有达到平台期。平均而言,每两次诊断就涉及一个此前在我们队列中未被牵连的基因。二线WGS聚焦于一组未确诊个体的亚队列,这些个体极有可能患有单基因形式的肌张力障碍,其中很大比例的患者具有早发性(81.3%)、症状广泛分布(50.8%)和/或共存特征(68.9%)。我们对核基因组和线粒体基因组中的变异进行了广泛搜索,在305例索引患者中的37例(12.1%)中发现了38个(超)罕见的诊断级发现,其中许多由于WES方法的劣势或流程限制而未被检测到。WGS识别出的难以捉摸的变异包括WES覆盖不佳的外显子改变、RNA基因变异、线粒体DNA突变小拷贝数变异、复杂的重排基因组结构以及短串联重复序列。为了在WGS结果不明确的病例中改进变异解读,我们采用了定量蛋白质组学的系统整合方法。这有助于验证与技术上具有挑战性的变异相关的诊断,并将一个意义不确定的变异升级(70例WGS结果不明确的索引患者中有3例,4.3%)。此外,无监督蛋白质组异常值分析辅以转录组测序,在另外3例具有潜在(深度)内含子变异的索引患者中(3/70,4.3%),揭示了由转录中断导致的病理基因表达不足,突出了靶向反义寡核苷酸治疗开发的潜力。最后,三联体WGS确定了候选PRMT1中一个新生错义变化,该基因编码一种组蛋白甲基转移酶。数据共享策略支持在4例表型相似的患者中发现3种不同的PRMT1新生变异,这些变异在体外试验中具有功能丧失效应。这项工作强调了持续扩大测序队列以表征肌张力障碍基因畸变广泛谱的重要性。我们表明,一组未解决的病例适合进行WGS和互补的多组学研究,为肌张力障碍的先进病因病理概念和未来诊断实践工作流程提供指导。