Misra Anika, Truong Buu, Urbut Sarah M, Sui Yang, Fahed Akl C, Smoller Jordan W, Patel Aniruddh P, Natarajan Pradeep
Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
Center for Genomic Medicine and Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA.
Nat Commun. 2025 Feb 12;16(1):1584. doi: 10.1038/s41467-025-56945-0.
Polygenic risk scores (PRS) continue to improve with novel methods and expanding genome-wide association studies. Healthcare and commercial laboratories are increasingly deploying PRS reports to patients, but it is unknown how the classification of high polygenic risk changes across individual PRS. Here, we assess the association and classification performance of cataloged PRS for three complex traits. We chronologically order all trait-related publications (Pub) and identify the single PRS Best(Pub) for each Pub that has the strongest association with the target outcome. While each Best(Pub) demonstrates generally consistent population-level strengths of associations, the classification of individuals in the top 10% of each Best(Pub) distribution varies widely. Using the PRSmix framework, which integrates information across several PRS to improve prediction, we generate corresponding ChronoAdd(Pub) scores for each Pub that combine all polygenic scores from all publications up to and including Pub. When compared with Best(Pub), ChronoAdd(Pub) scores demonstrate more consistent high-risk classification amongst themselves. This integrative scoring approach provides stable and reliable classification of high-risk individuals and is an adaptable framework into which new scores can be incorporated as they are introduced, integrating easily with current PRS implementation strategies.
多基因风险评分(PRS)随着新方法的出现和全基因组关联研究的扩展而不断改进。医疗保健和商业实验室越来越多地向患者提供PRS报告,但目前尚不清楚高多基因风险的分类在各个PRS之间是如何变化的。在这里,我们评估了已编目的PRS对三种复杂性状的关联和分类性能。我们按时间顺序排列所有与性状相关的出版物(Pub),并为每个与目标结果关联最强的Pub确定单个最佳PRS(Best(Pub))。虽然每个Best(Pub)在总体人群水平上显示出大致一致的关联强度,但每个Best(Pub)分布中前10%个体的分类差异很大。使用PRS混合框架,该框架整合多个PRS的信息以提高预测能力,我们为每个Pub生成相应的ChronoAdd(Pub)分数,该分数结合了直至并包括该Pub的所有出版物的所有多基因分数。与Best(Pub)相比,ChronoAdd(Pub)分数在它们自身之间表现出更一致的高风险分类。这种综合评分方法为高风险个体提供了稳定可靠的分类,并且是一个适应性框架,新分数引入时可以纳入其中,能够轻松地与当前的PRS实施策略相结合。