Zhu Hong, Qian Yi, Yan Yu, Chen Lijian, Chen Quanhua, Sun Huabin, Xu Yong, Yang Guangan
College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
Polymers (Basel). 2025 Jan 23;17(3):289. doi: 10.3390/polym17030289.
P-type polymer field-effect transistors (PFETs) achieve wide applications due to their environmental compatibility and inherent flexibility. However, the dielectric in PFETs presents a vulnerability that restricts the development of the advancement of p-type power devices and power integrated circuits with high voltage in power devices. In this work, we provide a novel method that employs p-type polymer DPPT-TT high-voltage PFETs with a stair gate dielectric structure (SGD) at both the source and drain sides. The breakdown voltage of this device is significantly increased, rising from 19 V to 80 V. This improvement is attributable to the SGD structure's ability to reduce the electric field between the source and drain. Although the step gate length () is 50 μm, the on-state resistance only increases by 20% in comparison to conventional devices. The step region contributes an additional resistance of 2.5 × 10 Ω/μm. The operational mechanism of the SGD PFET is demonstrated by TCAD simulations.
P型聚合物场效应晶体管(PFET)因其环境兼容性和固有的柔韧性而得到广泛应用。然而,PFET中的电介质存在一个弱点,这限制了p型功率器件和功率集成电路在高电压功率器件方面的发展。在这项工作中,我们提供了一种新颖的方法,该方法在源极和漏极两侧采用具有阶梯栅介质结构(SGD)的p型聚合物DPPT-TT高压PFET。该器件的击穿电压显著提高,从19 V升至80 V。这种改进归因于SGD结构降低源极和漏极之间电场的能力。尽管阶梯栅长度()为50μm,但与传统器件相比,导通电阻仅增加了20%。阶梯区域贡献了2.5×10Ω/μm的额外电阻。通过TCAD模拟证明了SGD PFET的工作机制。