Suppr超能文献

具有抗真菌作用的小二硫键蛋白:与AlphaFold版本模型相比的核磁共振实验结构

Small Disulfide Proteins with Antifungal Impact: NMR Experimental Structures as Compared to Models of Alphafold Versions.

作者信息

Gai Jiawei, File Márk, Erdei Réka, Czajlik András, Marx Florentine, Galgóczy László, Váradi Györgyi, Batta Gyula

机构信息

Department of Organic Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary.

Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria.

出版信息

Int J Mol Sci. 2025 Jan 31;26(3):1247. doi: 10.3390/ijms26031247.

Abstract

In response to the growth of emerging resistance to conventional antifungal drugs, antifungal proteins (AFPs) of filamentous Ascomycetes origin have been discovered in recent years. Understanding the structure of AFPs is crucial for elucidating their antifungal mechanisms and developing new therapeutic agents. While nuclear magnetic resonance (NMR) has proven effective in determining the structures of small proteins, some AFP structures remain unresolved, necessitating the use of alternative prediction methods. Through bioinformatics analysis and heatmaps of amino acid sequence identity and similarity matrix, we categorized AFPs into three major classes and six subcategories, revealing structural and bioactivity differences. We employed AlphaFold (AF) to predict the 3D structures of six different AFPs, with predictions compared to NMR-derived structures. The results demonstrated a high degree of consistency between AF and NMR structures, with AF excelling in structural quality assessment and accurately capturing complex disulfide bond patterns. Both AF2 and AF3 models outperform the NMR model in overall structural quality and coherence, with AF3 showing the best performance. However, the limitations of AF should be considered, including its reduced accuracy in predicting multi-metal ion complexes, suboptimal performance in highly flexible or disordered regions, and its inability to account for multiple conformers, as it generates only a single dominant structure. Moreover, while AF3 accurately predicts all disulfide bond patterns, AF2 falls short in this regard. This study verifies the reliability of AF in the structural prediction of cysteine-rich AFPs while highlighting these constraints, offering important support for the rational design of new protein-based antifungal drugs.

摘要

针对传统抗真菌药物新出现的耐药性的增加,近年来已发现丝状子囊菌来源的抗真菌蛋白(AFP)。了解AFP的结构对于阐明其抗真菌机制和开发新的治疗药物至关重要。虽然核磁共振(NMR)已被证明在确定小蛋白的结构方面有效,但一些AFP结构仍未解析,因此需要使用替代预测方法。通过生物信息学分析以及氨基酸序列同一性和相似性矩阵的热图,我们将AFP分为三大类和六个亚类,揭示了结构和生物活性的差异。我们使用AlphaFold(AF)预测六种不同AFP的三维结构,并将预测结果与NMR推导的结构进行比较。结果表明AF和NMR结构之间具有高度一致性,AF在结构质量评估方面表现出色,并能准确捕捉复杂的二硫键模式。AF2和AF3模型在整体结构质量和连贯性方面均优于NMR模型,其中AF3表现最佳。然而,应考虑AF的局限性,包括其在预测多金属离子复合物时准确性降低;在高度灵活或无序区域表现欠佳;以及由于它只生成单一的主导结构而无法解释多个构象体。此外,虽然AF3能准确预测所有二硫键模式,但AF2在这方面有所不足。本研究验证了AF在富含半胱氨酸的AFP结构预测中的可靠性,同时突出了这些限制,为基于蛋白质的新型抗真菌药物的合理设计提供了重要支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/70a6/11818080/03a8eec045f0/ijms-26-01247-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验