Suppr超能文献

雾计算中基于机器学习的资源管理:一项系统文献综述

Machine Learning-Based Resource Management in Fog Computing: A Systematic Literature Review.

作者信息

Khan Fahim Ullah, Shah Ibrar Ali, Jan Sadaqat, Ahmad Shabir, Whangbo Taegkeun

机构信息

Department of Computer Software Engineering, University of Engineering and Technology, Mardan 23200, Pakistan.

Center of Artificial Intelligence for Medical Instruments, Incheon Metropolitan City 21982, Republic of Korea.

出版信息

Sensors (Basel). 2025 Jan 23;25(3):687. doi: 10.3390/s25030687.

Abstract

This systematic literature review analyzes machine learning (ML)-based techniques for resource management in fog computing. Utilizing the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) protocol, this paper focuses on ML and deep learning (DL) solutions. Resource management in the fog computing domain was thoroughly analyzed by identifying the key factors and constraints. A total of 68 research papers of extended versions were finally selected and included in this study. The findings highlight a strong preference for DL in addressing resource management challenges within a fog computing paradigm, i.e., 66% of the reviewed articles leveraged DL techniques, while 34% utilized ML. Key factors such as latency, energy consumption, task scheduling, and QoS are interconnected and critical for resource management optimization. The analysis reveals that latency, energy consumption, and QoS are the prime factors addressed in the literature on ML-based fog computing resource management. Latency is the most frequently addressed parameter, investigated in 77% of the articles, followed by energy consumption and task scheduling at 44% and 33%, respectively. Furthermore, according to our evaluation, an extensive range of challenges, i.e., computational resource and latency, scalability and management, data availability and quality, and model complexity and interpretability, are addressed by employing 73, 53, 45, and 46 ML/DL techniques, respectively.

摘要

本系统文献综述分析了雾计算中基于机器学习(ML)的资源管理技术。本文采用系统评价和Meta分析的首选报告项目(PRISMA)协议,重点关注机器学习和深度学习(DL)解决方案。通过识别关键因素和约束条件,对雾计算领域的资源管理进行了全面分析。最终共筛选出68篇扩展版研究论文纳入本研究。研究结果表明,在雾计算范式中解决资源管理挑战时,人们对深度学习有强烈偏好,即66%的综述文章采用了深度学习技术,而34%采用了机器学习。诸如延迟、能耗、任务调度和服务质量等关键因素相互关联,对资源管理优化至关重要。分析表明,延迟、能耗和服务质量是基于机器学习的雾计算资源管理文献中涉及的主要因素。延迟是最常被提及的参数,77%的文章对其进行了研究,其次是能耗和任务调度,分别为44%和33%。此外,根据我们的评估,通过分别采用73、53、45和46种机器学习/深度学习技术,解决了广泛的挑战,即计算资源和延迟、可扩展性和管理、数据可用性和质量以及模型复杂性和可解释性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a3ff/11820886/e834724451b5/sensors-25-00687-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验